
Predicting Release Time for Open Source Software
based on the Generalized Software Reliability

Model
Hironori Washizaki∗, Kiyoshi Honda∗ and Yoshiaki Fukazawa∗

∗ Global Software Engineering Laboratory, Waseda University
3-4-1 Ohkubo, Shijuku-ku, 169-8555 Tokyo, JAPAN

Email: washizaki@waseda.jp, khonda@ruri.waseda.jp, fukazawa@waseda.jp

Abstract—There is a significant challenge that how to predict
the possible release date of the target software having enough
reliability in agile development where incremental development
and small software releases are key characteristics. Existing
approaches targeting agile development usually use release
backlogs for predicting and setting delivery windows; however
these do not consider the reliability of software for release
date prediction so that there is a possibility that software at
the predicted release date have poor reliability. Previously we
proposed a generalized software reliability model (GSRM) based
on a stochastic process and compared it with other models to
evaluate recent software developments. However, we, did not
directly evaluate the accuracy of the predicted release time by
model. In this paper, towards prediction of release dates in
agile development, we focus on the release dates of open source
software (OSS) developments and the number of detected issues
(faults) since OSS developments comply well with the definition
of the agile development in terms of incremental process and
frequent releases We define the accuracy of the predicted release
time using the given development terms and the number of issues.
Additionally, we propose a method to evaluate the accuracy of
the predicted release time. In the best case, GSRM shows only
0.572% Error Rate, which corresponds to a predicted release
date of two days prior to the actual release date. We believe that
our method should be applicable to agile developments too.

I. INTRODUCTION

Agile development is aimed at minimizing overall risk
and encouraging rapid and flexible response to specification
changes by using iterative and incremental process model[1].
Incremental development and small software releases are key
characteristics of agile software development processes. In
such processes, there is a significant challenge that how
to predict the possible release date of the target software
having enough reliability. Existing approaches such as an
approach based on Cumulative Flow Diagrams targeting agile
development[2] usually use release backlogs for predicting and
setting delivery windows; however these do not consider the
reliability of software for release date prediction so that there

0In our previous papers[4], [5], [6], we proposed GSRM and applied it to
several versions of OSS; however we have not evaluated the results in detail.
In this paper we suggest a method to predict the release time using data for
six months after the first issue is detected by GSRM and another model in
detail.

is a possibility that software at the predicted release date have
poor reliability.

Software reliability is a critical component of computer
system availability. Software reliability growth models can be
used to indicate whether enough faults have been removed
to release the software. Although the logistic curve and
Gompertz curve[3] are well-known software reliability growth
curves, they cannot account for the dynamics of software
development. Development is affected by various elements
of the development environment, including the skills of the
development team and changes in requirements. Especially in
agile developments, there could be various dynamic situations
such as changing and prioritizing requirements frequently.

Examples of software reliability models include the ”Times
Between Failures Models” and ”Failure Count Models”[7];
among them we used the ”Failure Count Model,” which is
based on counting failures (issues) and probability methods.
The Goel-Okumoto NHPP Model and the Musa Execution
Time Model are examples of this type of model [7]. Some of
recent studies by Tamura[8], Yamada[9], Cai[10], Kamei[11],
Dohi[7], Schneidewind[12], Nguyen[13], and Okamura[14]
have attempted to describe the dynamics of developments
using stochastic differential equations. Although many models
have been proposed, surveyed, and compared[15], [16], [23],
most failure count models cannot account for the dynamics
of development, such as drastic changes in the development
team composition or significant reductions in the development
time. And these conventional models cannot precisely predict
when developments will end.

To predict the time range that a development will end, here
we propose a method employing our model, a generalized
software reliability model (hereafter GSRM[5], [6]), which
can describe several development situations involving random
factors, such as the skills of teams and the development
environment. Previous studies[17] have employed only linear
stochastic differential equations, but our research indicates that
non-linear stochastic differential equations lead to elaborate
equations that can model situations more realistically[6].

Moreover, towards prediction of release dates in agile
development, we applied our method to several versions in



a certain open source software (OSS) development to reveal
the development time frame of typical OSSs. As a result, we
successfully predicted the release dates of versions of OSS
more accurately than a representative conventional approach.

Agile developments and OSS developments share many
principles and values[18]. We believe that our method should
be applicable to agile developments since OSS developments
comply well with the definition of the agile development
in terms of incremental process and frequent releases[19],
and it is indicated that all the agile methods are in essence
applicable to open source software development because of
their iterative and incremental character[20]. Although in some
agile development methods release dates are fixed to some
extent due to fixed length of iterations, our method should be
still beneficial for various purposes such as predicting which
releases will have enough reliability.

This paper aims to answer the following research questions.
RQ1: Is GSRM better than other models (e.g., NHPP)

from the viewpoint of prediction of number of
issues?

RQ2: Is GSRM better than other models (e.g., NHPP)
from the viewpoint of prediction of release dates?

Our contributions are as follows.
• A two-step method to predict the release time of OSS:

separation of development time periods into different
versions, and, application of GSRM for prediction.

• A method to evaluate the prediction accuracy in terms of
release date by defining a Error Rate as a relative amount
of prediction error of the release date.

• An evaluation result targeting a OSS front-end framework
”foundation”[21] showing that our prediction method
works better than NHPP.

The remainder of the paper is organized as follows. Sec-
tion II describes our method, while section III evaluates our
method. Section IV discusses related works. Finally, section
V provides a conclusion and future direction.

II. PROPOSED METHOD

In this section, we propose a two-step method to predict the
release time and a method to evaluate the prediction accuracy
in terms of the release time.

A. Prediction of release time

To determine when OSS can be released with respect to the
number of detected faults, we propose the two-step method
described below: 1) and, 2) Using GSRM to predict the
number of faults and the release date.

1) Separation into time periods: The upper graph in
Fig. 1 indicates the number of detected faults for the
”foundation,”[21] which is a OSS front-end framework, di-
vided by each version. The curve shape is sharper when a
newer version is released. Therefore, the versions are separated
based on the changing points before applying our model
(GSRM) because such separation allows the model to more
precisely approximate the data.

Fig. 1. Number of detected faults and development days for the ”foundation.”

2) GSRM: For our software reliability model, we extend a
nonlinear differential equation that describes the fault content
as a logistic curve to an Ito-type stochastic differential equa-
tion. We start with the logistic differential equation, which is
expressed as

dN(t)/dt = N(t)(a+ bN(t)) (1)

N(t) is the number of detected faults at time t, a defines
the growth rate, and b is the carrying capacity. If b = 0,
then the solutions of this equation are exponential functions.
We extend equation (1) into a stochastic differential equation
because actual developments do not correctly obey equation
(1) due to numerous uncertainties and dynamic changes.

We consider such dynamic elements to be time-dependent
and to contain uncertainty, which are expressed using a. The
time-dependence of a can be used to describe situations such
as the improved skills of development members and increased
growth rate. The uncertainty of a can describe parameters such
as the variability of development members and environment.
We analyze the growth of software with an emphasis on
the test phase by simulating the number of detected faults.
We assume that the software development has the following
properties.

• The total number of faults is constant.
• The number of faults that can be found depends on time.
• The number of faults that can be found contains uncer-

tainty that can be simulated with Gaussian white noise.
Considering these properties, we extend equation (1) to an

Ito-type stochastic differential equation with a(t) = α(t) +
σdw(t) as shown below.

dN(t) = (α(t) + βN(t))N(t)dt+N(t)σdw(t) (2)



TABLE I
COMBINATIONS OF α(t) AND γ(t).

γ1(t) = N(t)σdw(t) γ2(t) = σdw(t) γ3(t) = 1/N(t)σdw(t)
α1(t) = a1(const.) The number of issues per unit time is

constant but the uncertainty increases
near the end. This model is similar to a
logistic curve. (Model 1-1)

The number of issues per unit time is
constant and the uncertainty is constant
at any given time. (Model 1-2)

The number of issues per unit time is
constant but the uncertainty is greater
at the start of the project than at
the end (e.g., the team matures over
time).(Model 1-3)

α2(t) = a2(t < t1)
α2(t) = a3(t ≥ t1)

The number of issues per unit time
changes at t1, and the uncertainty in-
creases near the end (e.g., new members
join the project at time t1).(Model 2-1)

The number of issues per unit time
changes at t1 but the uncertainty is
constant at any given time.(Model 2-2)

The number of issues per unit time
changes at t1 but the uncertainty is
greater at the start of the project than
at the end.(Model 2-3)

α3(t) ∝ t Both the number of detected faults per
unit time and the uncertainty increase
near the end (e.g., increasing manpower
with time).(Model 3-1)

The number of detected faults per unit
time increases but the uncertainty is
constant at any given time.(Model 3-2)

The number of detected faults per unit
time increases but the uncertainty is
greater at the start of project than at the
end.(Model 3-3)

α(t) + σdw(t) is the differential of the number of detected
faults per unit time, γ(t) = N(t)σdw(t) is the uncertainty
term, σ is the dispersion, and β is the nonlinear carrying ca-
pacity term. This equation has two significant terms: α and dw.
α affects the end point of development, while dw affects the
growth curve through uncertainties. In particular, the stochastic
term depends on N(t), which means that uncertainties depend
on the number of detected faults. We compare three different
types of dependencies of γ(t) on N(t).

(a) γ1(t) = N(t)σdw(t).
(b) γ2(t) = σdw(t)(γ(t) does not depend on N(t)).
(c) γ3(t) = 1/N(t)σdw(t)(γ(t) depends on the inverse

ofN(t)).
Table I summarizes the types of α(t), the coefficient of dw(t),
and the corresponding situations.

The table indicates that the reliability growth models can
be applied to nine types of development situations. Existing
models can describe only one of these situations with addi-
tional limitations. In contrast, GSRM can describe several of
these situations. This is primarily because existing models can-
not handle time-dependent growth rates without limitations,
whereas GSRM can handle the time-dependence growth rates.

B. Evaluation of accuracy
We use GSRM to predict the release time. For comparison,

we also predict the release date using the Non-Homogeneous
Poisson Process (NHPP) model[22], [23] since the NHPP
model is the most popular one[6]. Herein we assume that the
release time is defined as the time where 95% of the maximum
number of predicted issues are detected. It should be noted that
this definition depends on the development team’s policy.

Fig. 2 shows that the predicted release times driven by
GSRM and NHPP model. Herein the predicted release time
is defined as the intersection between the model line and the
point where 95% of the maximum number of predicted issues
is detected. Additionally, we propose a method to evaluate the
accuracy of the predicted date using limited datasets of issues
and dates. For example, here we define the terms as the data
from the date when the first issue was detected to six months
later (180 days).

Fig. 2. Predicted release dates by model using the threshold that 95% of the
maximum number of faults are detected.

Figure 3 graphically depicts this method where the data in
the blue dotted line is used to predict the release time in the
red box.

Fig. 3. Number of days until release (red line) is predicted using the data in
the blue dotsdotted line, we predicted for the number of issues in the red line
about ”foundation.”



We evaluated the prediction accuracy using the Error Rate,
which is defined as

ErrorRate =
PredictedReleaseDay − ReleaseDay

ReleaseDay
(3)

In equation (3), the Error Rate means the relative amount of
prediction error of the release date. The Predicted Release Day
is defined as the value where the model detects 95% of the
maximum number of predicted faults. The dataset in the model
includes data from the date when the first issue was detected
to six months later. If the Error Rate is less (greater) than 0,
the model predicts a release day earlier (later) than the actual
release day.

If one model precisely approximates the release date for one
OSS, it may not be accurate for future values. Thus, estimating
the accuracy of model predictions is important, which is why
we evaluate the prediction accuracy of a model.

III. EVALUATION

To answer the following research questions, we conducted
a case study targeting actual development data of OSS (”foun-
dation”) in a given time-independent situation obtained from
Github site[24], and evaluated our method employing GSRM
and general NHPP models.

RQ1: Is GSRM better than other models (e.g., NHPP)
from the viewpoint of prediction of number of
issues?

RQ2: Is GSRM better than other models (e.g., NHPP)
from the viewpoint of prediction of release dates?

The time limitation is necessary because the NHPP model
cannot be applied to time-dependent situations. We also com-
pare the predicted numbers of issues driven by NHPP and
GSRM at the end of development using six months (180 days)
of data.

As GSRM, we chose Model 1-2 (i.e. both of the number of
issues per unit time and the uncertainty are constant) among all
of nine model types in Table I because of two reasons. Firstly
it was hard to identify specific uncertainty type and specific
type of dependencies of γ(t) on N(t). Secondly we wanted to
make the comparison and discussion simple. Comparison with
other model types (such as Model 1-3) is one of our future
works.

A. Prediction of Number of Issues (RQ1)

Table II[5] shows the number of predicted issues, days of
development for each version, the residual sum of squares
(RSS), and the Akaike’s Information Criterion (AIC) for each
model. The results show GSRM is better than NHPP from the
viewpoint of prediction as GSRM more precisely predicts the
number of detected issues than NHPP although RSS and AIC
of GSRM are slightly larger than those of NHPP. However,
Table II cannot describe the accuracy of predictions because
it shows the qualities of the models and not the release day.
In the next section, we evaluate the prediction accuracy of the
models.

TABLE II
QUALITY OF GSRM AND NHPP MODELS.

Actual Data GSRM NHPP
Version 2 Issue 536 526 899

Days 258 245 854
RSS - 50388 25929
AIC - 2108 1936

Version 3 Issue 1066 1170 32555
Days 242 306 23102
RSS - 182119 44708
AIC - 2306 1965

Version 4 Issue 1974 2203 5897
Days 265 323 2017
RSS - 720089 302405
AIC - 2865 2634

B. Prediction of Release Date (RQ2)

Table III shows the actual release date and predicted release
date by model. The results show that GSRM is superior to
NHPP from the viewpoint of accuracy. Hence, error rates and
predicted release of GSRM are better than those of NHPP.

TABLE III
ACCURACY OF PREDICTIONS FOR GSRM AND NHPP MODELS.

Version Release day Model Predicted release day Error Rate
2 258 GSRM 212 -0.178

NHPP 1382 4.36
3 242 GSRM 240 -0.00572

NHPP 1294 4.35
4 265 GSRM 244 -0.0778

NHPP 445 0.679

C. Threats to Validity

For the case study, we used the actual development data
of OSS as it is so that the data could contain inappropriate
issue reports or some other false elements such as duplicate
reports[25] and a single issue report actually containing multi-
ple different faults. That might affect the internal validity. As
our future work, we intend to confirm the validity of the data
in detail.

As a threat to external validity, we only tested our method
employing GSRM with single OSS, which is insufficient to
make generalizations about our method. As our future work,
we intend to apply our method to other OSSs. Moreover, we
only compared our method with the NHPP model; although
other conventional models are similar to the NHPP model, our
method should also be compared to them.

IV. RELATED WORK

Power proposed an approach for predicting and setting
delivery windows based on release backlogs targeting agile
development[2]; the approach does not consider the reliability
of software for release date prediction so that there is a
possibility that software at the predicted release date have poor
reliability.

Many different types of software reliability growth models
exist. Yamada et al. proposed an extended NHPP model, which
is related to testing-domain[26]. The test-domain dependent



model includes the notion that the tester’s skills should im-
prove by degrees; thus, skills grow over time. The test-domain
dependent model adds additional assumptions to the NHPP
model. However they did not confirm the approach is useful
for OSS developments and/or agile developments.

Typical software reliability models use waterfall develop-
ment, but Fujii et al. developed a quantitative software reliabil-
ity assessment method based on the familiar non-homogeneous
Poisson processes for incremental development processes[27].
Fujii et al. employed both the number of faults and software
metrics to demonstrate the reliability prediction through a case
study. Although there method could be applicable to OSS
developments and agile developments, metrics measurement
results in addition to data of faults are needed; often it is hard
to obtain those additional measurement results.

Aman proposed a multistage model that divides the whole
development period of OSS into multiple stages, and applies
a different growth curve to a different stage[28]. Although
its concept is related to our method involving separation of
development time periods, target types of data for growth
model applications are quite different; its target is code change
events while our target is number of issues (faults). We have a
plan to compare our method with the multistage model against
same issue data.

There is an ongoing challenge to monitor bug-fixing process
after releases in OSSs[29]. Our future work could include a
investigation of relationship between the bug-fixing process
during development and the process after releases in OSSs.

V. CONCLUSION

Using GSRM, we successfully predict the release dates
of OSS. Additionally, we propose a method to evaluate the
prediction accuracy, which confirms that GSRM can precisely
predict the release date. We believe that our method should
be applicable to agile developments because of their iterative
and incremental character.

This paper is limited to time-independent development
situations in order to compare the two models because NHPP
cannot handle time-dependent variables. In the future, we
plan to adjust the time-dependence of the models, which may
allow GSRM to more accurately predict the number of issues
detected. Moreover, we plan to apply our method to agile
development projects.
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