

History-Based Test Case Prioritization for Black Box
Testing on a New Product using Ant Colony

Optimization
Tadahiro Noguchi, Hironori Washizaki, Yoshiaki

Fukazawa
Dept. Computer Science and Engineering

Waseda University
Tokyo, Japan

tadahiro93@akane.waseda.jp, {washizaki,
fukazawa}@waseda.jp

Atsutoshi Sato, Kenichiro Ota
Software Test Division

SHIFT Inc.
Tokyo, Japan

{sato, kenichiro.ota}@shiftinc.jp

Abstract—Test case prioritization is a technique to improve
software testing. Although many works have investigated test
case prioritization, they focus on white box testing or regression
testing. However, software testing is often outsourced to a
software testing company that employs black box testing. Herein
a framework is proposed to prioritize test cases for black box
testing on a new product using the test execution history collected
from a similar prior product and the Ant Colony Optimization. A
simulation using two actual products shows the effectiveness and
practicality of our proposed framework.

Keywords—test case prioritization; black box testing; ant colony
optimization

I. INTRODUCTION
Software testing is an essential but expensive verification

process. It is commonly outsourced to a software testing
company for reverification to reduce time or costs that employs
black box testing. Although there is a technique called test case
prioritization[1] to improve software testing, it hasn't been
applied well to such third-party testing because most previous
studies on test case prioritization[1][2][3] involve code
coverage[4]. For black box testing, J. M. Kim, et al.[5] and H.
Aman, et al.[6] proposed using historical test case performance
data on regression testing prioritization. However, the first
iteration of black box testing on a new product is difficult to
apply due to insufficient historical data on the same test cases
and the precedence constraints between test cases.

To employ test history data on a similar prior product in
test case prioritization for black box testing on a unit and
integration testing of a new product, we propose using test
categories in history data collection instead of test cases. Also,
to consider the precedence and resource constraints, we use the
Ant Colony Optimization (ACO) as a prioritization method and
the Average of the Percentage of Faults Detected (APFD) as
the test execution order evaluation.

 Our main contributions are:

• We propose a framework to apply ACO to history-
based test case prioritization for black box testing.

• Our framework is applied actual products, confirming
that it improves the effectiveness of black box testing
on new products within a practical time.

II. BACKGROUND

A. ACO
ACO is a metaheuristic algorithm based on the behavior of

ants seeking food. This algorithm is composed of four steps:

Step 1: Each ant traverses a graph, which is thoroughly
connected and contains a set of vertices V and edges E. The
next vertex is selected according to the probability calculated
from a pheromone deposited on each edge and heuristic
information to produce the order of vertexes (path). Step 2:
Evaluate each path. Step 3: Terminate the process if the end
condition is met. Step 4: Otherwise, calculate the amount of
pheromone deposited in this iteration, and return to Step 1.

We adopt ACO because the precedence constraints are
easily treated by excluding vertexes that violate the constraints
when choosing the next vertex in Step 1.

B. Average of the Percentage of Faults Detected (APFD)
In this study, the order of test cases is evaluated by APFD,

which measures the weighted average of the fault coverage
during software testing. APFD is defined as

 APFD = 1 – (TF1 + TF2 + ... + TFm) / (nm) + (1/2n) (1) α + β = χ. (1) (1)

where T represents the test suite, m represents the number
of faults, n is the number of test cases, and TFi is the position
of the first test case in T that reveals fault i.

III. PROPOSED FRAMEWORK
Fig. 1(a) overviews our proposed framework.

1) Testers classify test cases of a prior product and a target
product into test categories. An example of a
classification strategy is feature-based classification
(e.g., Create New Item, Update Item, Sort, etc.).

2) Testers collect historical performance data for each
category. The data include the number of test cases and
the number of detected faults for each severity (e.g.,
major, normal, minor and trivial).

3) Testers construct a list of precedence constraints
between categories (e.g., test cases of Update Items
must be executed after those of Create New Item, etc.)

4) Our framework generates a prioritized category order
for the prior product using ACO.

5) Our framework then creates a prioritized category list
for the target product by comparing the generated list in
step 4 and the list of the target product.

Fig. 1. (a) Overview of the proposed framework, (b) Concept image of ACO

The test history data on a similar prior product cannot be
employed directly in the test case prioritization for another
product due to the differences between them. Abstracting test
cases into test categories makes the historical data reusable on
another new product, because both test categories usually
roughly correspond each other according to our experience.
This shows the limitations of our framework at the same time.
Optimizing test categories doesn't always produce optimized
test cases. Moreover, the tendency to fault detection on a new
product can be different from that on a prior product.

To use ACO, the end condition as well as how to calculate
pheromones, heuristic information, and the path evaluation
value must be determined. We employs the following settings:

• End Condition: Complete after the 10th iteration.

• Pheromone: 1 as the initial value on each edge with a
10% evaporation rate and a 100% as deposition rate.

• Heuristic Info: Weighted Number of Faults Detected
(WNFD), which is defined as

 WNFD = αΜ + βn + γm + δt (2)

where M, n, m, and t represent the number of major, normal,
minor, and trivial bugs, respectively. α, β, γ, and δ represent
the weighted rate for each severity level (500, 100, 10, and 1 in
our research, respectively).

• Path Evaluation: APFD.

Fig. 1(b) shows the core idea of Step 4 using four test
categories named A, B, C, and D. If an ant visits D after A, and
B must be executed after C, the ant should choose C(Fig. 1b(i)).
If the best ant visits vertexes in order A-D-C-B, the prioritized
category list as output will be A-D-C-B (Fig. 1b(ii)).

IV. EVALUATION
We performed a simulation to evaluate (a) whether our

framework improves the effectiveness of black box testing on a
new product and (b) whether results are obtained in a timely
manner. We used two actual products tested by the company
that two of the authors work for: medical software, which has
about 17000 test cases, 100 test categories, and 1400 faults, and
financial software, which has around 3000 test cases, 50 test
categories, and 80 faults. All categories in financial software
are also appeared in medical software. The medical software
was used as the prior product and the financial product as the
target product. We implemented the proposed framework 100
times and generated 100 prioritized category lists. As a control,
we also created 100 random-ordered category lists with the
same precedence restrictions. These lists were evaluated with
the APFD on the target product. Fig. 2 shows the results.

Fig. 2. Box plots of APFD for prioritized and random-ordered lists

The average APFD of the lists that our framework
generated is 0.94, while that of the random-ordered lists is 0.69.
Our framework took 9.3 seconds on average to finish. These
results suggest that our approach successfully improves the
effectiveness of black box testing on a new product within a
reasonable time.

V. CONCLUSION AND FUTURE WORK
We propose a history-based framework to prioritize test

cases for black box testing on new products using ACO. A
simulation using two real products shows that our framework
can improve the effectiveness of black box testing within a
practical time. In the future, we plan to conduct simulations on
more diverse products to refine our framework. Moreover, we
aim to investigate an automated precedence constraint
detection algorithm to reduce the human cost.

REFERENCES
[1] G. Rothermel, et al., "Test case prioritization: an empirical study,"

ICSM'99, pp.179-188.
[2] A. Srivastava and J. Thiagarajan, "Effectively prioritizing tests in

development environment," ACM SIGSOFT ISSTA, 2002, pp.97-106.
[3] Z. Li, M. Harman, and R.M. Hierons, "Search algorithms for regression

test case prioritization," IEEE TSE, 33(4), 2007, pp.225-237.
[4] K. Sakamoto, K. Shimojo, R. Takasawa, H. Washizaki and Y. Fukazawa,

“OCCF: A Framework for Developing Test Coverage Measurement
Tools Supporting Multiple Programming Languages,” Proceedings of
the 6th IEEE International Conference on Software Testing, Verification
and Validation (ICST 2013), pp.422-430, Testing Tools Track, 2013.

[5] J.-M. Kim and A. Porter, “A history-based test prioritization technique
for regression testing in resource constrained environments,” Proc. 24th
Int’l Conf. Software Eng., pp. 119-129, 2002.

[6] H. Aman, et al., "Application of the 0-1 Programming Model for Cost-
Effective Regression Test," COMPSAC'13, pp.720-721.

