
adfa, p. 1, 2011.

© Springer-Verlag Berlin Heidelberg 2011

Interactive Recovery of Requirements Traceability Links

Using User Feedback and Configuration Management

Logs

Ryosuke Tsuchiya1, Hironori Washizaki1, Yoshiaki Fukazawa1, Keishi Oshima2, and

Ryota Mibe2

1 Dept. Computer Science of Waseda University, Tokyo, Japan

ryousuke_t@asagi.waseda.jp, {washizaki, fukazawa}@waseda.jp
2 Yokohama Research Laboratory of Hitachi, Ltd., Kanagawa, Japan

{keishi.oshima.rj, ryota.mibe.mu}@hitachi.com

Abstract. Traceability links can assist in software maintenance tasks. There are

some automatic traceability recovery methods. Most of them are similarity-

based methods recovering links by comparing representation similarity between

requirements and code. They cannot work well if there are some links indepen-

dent of the representation similarity. Herein to cover weakness of them and im-

prove the accuracy of recovery, we propose a method that extends the similari-

ty-based method using two elemental techniques: a log-based traceability re-

covery method using the configuration management log and a link recommen-

dation from user feedback. These techniques are independent of the representa-

tion similarity between requirements and code. As a result of applying our me-

thod to a large enterprise system, we successfully improved both recall and pre-

cision by more than a 20 percent point in comparison with singly applying the

similarity-based method (recall: 60.2% to 80.4%, precision: 41.1% to 64.8%).

Keywords: traceability, configuration management log, interactive method

1 Introduction

Traceability of software development is defined as the ability to trace the relation-

ships between software artifacts. We call these relationships “traceability links.” Here

we focus on links between requirements and source code files, which are called “re-

quirements traceability links.” For example, if there are the requirement “Recover

links automatically” and the source code file “LinkRecover.java” implementing the

requirement, a requirements traceability link exists between them.

Grasping requirements traceability links is effective in several software mainten-

ance tasks, especially for improving the modification efficiency for change requests

and understanding the source code [1,2,12]. For example, traceability links allow an

engineer to effortlessly identify source code files that need to be modified upon re-

ceiving a change request.

mailto:ryousuke_t@asagi.waseda.jp

Because software must be analyzed to identify and extract traceability links, if the

size of the target software is large, it is difficult to recover requirements traceability

links manually due to the massive number of combinations between requirements and

source code files. Consequently, some methods to automatically recover requirements

traceability links have been developed [2,3,4,5,6,17,18,19,20]. Most of them are simi-

larity-based methods recovering links by comparing representation similarity between

requirements and source code. They can recover links with high accuracy if target

software is within the applicable range. However, they cannot work well if there are

some links independent of the representation similarity. To confirm the effectiveness

for actual software products, we applied a typical similarity-based method to a large

enterprise system developed by a company, and the method recovered links with a

recall of 60.2% and a precision of 41.1%. This accuracy is unsuitable for practical

use.

To cover weakness of the similarity-based method and improve the application ef-

fect, herein we propose a method that extends the similarity-based method using two

elemental techniques. The first technique is a log-based traceability recovery method

using the configuration management log to compensate for the lack of information

about the relationships between the requirements and the source code. The second

technique is the “link recommendation” using user feedback which is results of vali-

dation for recovered links. This process is not an additional burden for the users be-

cause validation of links is an inevitable and ordinary cost. These techniques are in-

dependent of the representation similarity between requirements and source code.

We applied our refined method to the abovementioned enterprise system to eva-

luate the improvement in recall and precision. This system has more than 80KLOC.

We recovered traceability links between 192 requirements and 694 source code files.

The system has known 726 correct links. In this study, we evaluate recall and preci-

sion by comparing the known correct links to the links recovered by our refined me-

thod. This study addresses the following Research Questions.

 RQ1: How accurately can we recover links by the similarity-based method?

 RQ2: How much does the addition of the log-based method improve the recovery

accuracy?

 RQ3: How much does the addition of link recommendations improve the recovery

accuracy?

We answered these questions by conducting evaluation experiments. We recovered

links with a recall of 80.4% and a precision of 64.8%, which is more than a 20 percent

point improvement in both recall and precision (recall: 60.2% to 80.4%, precision:

41.1% to 64.8%). In this accuracy, users can recover 80% of the correct links if they

validate about 1.3 links for each source code file compared to validating over 4 links

using only the similarity-based method. Although our method uses user feedback, it

will eventually require less effort of the user. The contributions of this study are:

 We propose a traceability recovery method that extends the similarity-based me-

thod by incorporating two elemental techniques.

 We develop a prototype interactive tool to implement our refined method.

 We validate our refined method by comparative experiments with the similarity-

based method using sufficiently large software.

The remainder of the paper is organized as follows. Section 2 provides background

information. Section 3 describes our method, while section 4 evaluates our method.

Section 5 discusses related works. Finally, section 6 provides a conclusion and future

direction.

2 Background

2.1 Similarity-Based Method

To recover links automatically, most of previous methods compare the representation

similarity between requirements and source code because related documents often

share a lot of same words. We call them “similarity-based method.” In the other

words, if a requirement has a similar representation as the source code file, they are

related. Therefore, we can recover links by calculating similarity between require-

ments and source code.

Several techniques have been proposed to calculate the representation similarity

between documents. A typical example is the vector space model proposed by Salton

et al. [13]. In this model, a sentence is represented by one vector that depends on the

valid terms in the sentence. The contents of the sentence are determined by the direc-

tion of the vector.

When this method compares the representation between requirements and source

code files, terms are extracted from each artifact. For the requirements, terms are

extracted from the requirement names or the requirement specification documents.

For source code files, terms are extracted from the identifiers (e.g., the name of file,

class, method, and field) and source code comments. Consequently, the effectiveness

of this method depends on these extracted terms, and it performs poorly in some sce-

narios. For example, in non-English speaking countries, engineers often use their

native language in documents and source code comments to facilitate communica-

tions. If requirements are written in a non-English language, only the source code

comments can be used to compare the representations. Moreover, if there are too few

comments, the similarity cannot be calculated. On the other hand, even if require-

ments are written in English, this method does not work well when the identifier lacks

meaningful terms (e.g., using an extremely shortened form).

2.2 Log-Based Method

As mentioned above, the similarity-based method cannot accurately recover links for

some software. To recover links in such cases, we previously proposed a log-based

traceability recovery method using the configuration management log [11]. The con-

figuration management log contains information about modifications of software

artifacts. We mainly considered the log of version control system such as Subversion

[14] or Git [15], which is composed of revisions that include messages and file paths

(Figure 1). Hypothesizing that revision messages contain information about require-

ments, we designed a traceability recovery method using the configuration manage-

ment log as an intermediary. Because revision messages, requirements and source

code comments are often written in an engineer’s native language, we can recover the

links of software using a non-English language.

Although this method is effective for software using a configuration management

log, it cannot be used singly because it cannot recover links with source code files that

have no revision histories in the management log. To resolve such weakness, herein

we combine the similarity-based method with the log-based method.

2.3 Inevitable Validation Cost of the Candidate Links

Users must validate the recovered candidate links because they may contain incorrect

links (false positives) or overlook links (false negatives). This cost is inevitable unless

the method recovers links with perfect accuracy. Therefore, this study effectively

employs the results of user’s validation.

2.4 Call Relationships

A study by Ghabi et al. [10] confirmed that “Code elements sharing call relationships

are often linked by the same requirement.” The code element represents elements that

comprise the source code (e.g., methods, classes and files). For example, in Figure 2,

there is a high possibility that the method “ScoreCalculator.calulate()” is linked with

the requirement “Recover links” because both the caller method “LinkRecov-

er.recover()” and the callee method “Link.setRelevance()” are linked with the re-

quirement.

In our approach, we use this finding along with user feedback, as described above,

in a technique called “Link Recommendation,” which is described in detail in section

3.

Fig. 1. Example of a revision in the configuration management log

Fig. 2. Traceability links and call relationships

2.5 Motivating Examples

We have applied the typical similarity-based method using the vector space model to

a large enterprise system, which was developed by a Japanese company. Hence, the

requirement specification documents are written in Japanese. Although the source

code comments are also written in Japanese, some source code files lack comments.

Consequently, the method recovered links with a recall of 60.2% and a precision of

41.1%. These results motivated us to extend the similarity-based method.

After improving some problems of the log-based method proposed in our previous

work, we applied it to the abovementioned enterprise system. As a result, we found

that this method is superior to the similarity-based method under certain circums-

tances. When we limited the target source code files to those with sufficient revision

histories in the configuration management log (the number of source code files de-

creases from 694 to 317), this method recovered links with a recall of 67.6% and a

precision of 69.1%. The similarity-based method only recovered links with a recall of

46.3% and a precision of 47.3% in the same situation. The superiority of the log-

based method in limited scenarios motivated us to combine the similarity-based me-

thod with the log-based method.

3 Approach

3.1 Overview

We propose a method to recover requirements traceability links. This method extends

the similarity-based method using two elemental techniques. In this study, we calcu-

late the similarity between documents by using the vector space model. Figure 3

shows the overview of our method. Our method requires three artifacts as inputs.

1. Requirements

A list of requirement names is essential. In addition, we also use the requirement

specification documents written in a natural language. In this study, we focus on

requirements that are concrete and objective (i.e., software functional and non-

functional requirements).

2. Source code files

Because our method applies natural language processing and analyzes call relation-

ships, we can apply it to source code languages that the above techniques are ap-

plicable for. The prototype tool for our method currently supports Java [16] (partly

C and C++).

3. Revisions of the configuration management log

We require the revision histories of the source code files. Our method mainly fo-

cuses on the log of the version control system. Our tool currently supports the logs

of Subversion and Git. Prior to employing our method, unnecessary revisions,

which indicate modification histories other than the source code files, are excluded.

Moreover, revisions including simultaneous modification of too many source code

files are excluded; that is, the tool excludes revisions involving over 10 source

code files.

First, we create a document-term matrix (DTM) using the three input artifacts.

Next, two kinds of relevance scores are calculated for each candidate link. The first

score denotes the similarity score calculated by the similarity-based method. The

second is the relevance score calculated by the log-based method. In this study, can-

didate links indicate all relationships between the target elements. For example, if the

target system has 100 requirements, there are 100 candidate links for each source

code file. However, the reliability as a score in the candidate links differs.

After calculating the score, users specify a target (requirement or source code file)

that they want to recover links. Then our tool displays candidate links of the specified

target after arranging the candidate links according to the sorting algorithm of our

method. This algorithm sorts candidate links using two kinds of scores and user feed-

back. As shown in Figure 4, for example, if users specify the requirement “Recover

links” as the target of the recovering links, the tool displays the sorted candidate links.

Users then validate candidate links presented by our tool starting from the top.

They judge the correctness of the candidate links, and each time, the result is provided

as feedback to the tool. Then the tool sorts the presentation order of the remaining

candidate links according to the user feedback. In Figure 4, by validating the correct-

ness of the first presented link, the presentation order is re-sorted.

Finally, after users validate the candidate links and identify some correct links, us-

ers can determine the requirements traceability matrix at an arbitrary time. The matrix

shows the relationships between the requirements and source code files. Below our

method is described in detail.

Fig. 3. Overview of our method

Fig. 4. Presentation and validation of sorted candidate links of a specified requirement

3.2 Document-Term Matrix Generation

Requirements, source code files and revisions are treated as documents in this ap-

proach. In the vector space model, each document is represented as a vector deter-

mined by valid terms (nouns, verbs, and adjectives) in the document. Terms of the

requirement are extracted from the requirement name and the requirement specifica-

tion document. Terms of the source code file are extracted from source code com-

ments and identifiers. Then, if the identifier is represented as the connected term (e.g.,

LinkRecover, recover_Links()), the identifier is decomposed into individual terms.

However, if requirements and source code comments are written in a non-English

language, terms are not extracted from the identifiers. Terms of revisions are ex-

tracted from revision messages.

Here, 𝐷 represents a set of documents and 𝑇 presents a set of terms. For a docu-

ment 𝑑𝑥 (∈ 𝐷) containing 𝑁 valid terms [i.e., 𝑡1 , 𝑡2 , ⋯, 𝑡𝑁 (∈ 𝑇)], 𝑤 𝑡𝑝 , 𝑑𝑥 (1 ≤

𝑝 ≤ 𝑁) is the number of appearances of 𝑡𝑝 in 𝑑𝑥 . Consequently, 𝑑𝑥 can be

represented by N-dimensional vector 𝑣𝑥 as

𝑣𝑥 = 𝑤 𝑡1 , 𝑑𝑥 , 𝑤 𝑡2 , 𝑑𝑥 , ⋯ , 𝑤 𝑡𝑁 , 𝑑𝑥 . (1)

In the vector space model, the vector of the document is represented as Formula (1).

However, we use the vector weighted by TF-IDF to more accurately represent the

document characteristics. TF-IDF indicates the term frequency and inverse document

frequency. Frequently used terms in a document have high importance for the docu-

ment. On the other hand, common terms used in many documents have low impor-

tance (e.g., general words). The term frequency value of 𝑡𝑝 in 𝑑𝑥 is defined as

𝑡𝑓 𝑡𝑝 , 𝑑𝑥 =
𝑤 𝑡𝑝 , 𝑑𝑥

 𝑤 𝑡𝑁 , 𝑑𝑥 𝑁

 . (2)

If the number of documents is represented as 𝑀 and the number of documents con-

taining 𝑡𝑝 is represented as 𝑕 𝑡𝑝 , the inverse document frequency value of 𝑡𝑝 is de-

fined as

𝑖𝑑𝑓 𝑡𝑝 = log𝑒

𝑀

𝑕 𝑡𝑝
 . (3)

Therefore, the vector weighted by TF-IDF is defined as

𝑣′𝑥 = 𝑡𝑓 𝑡1 , 𝑑𝑥 ∗ 𝑖𝑑𝑓 𝑡1 , 𝑡𝑓 𝑡2 , 𝑑𝑥 ∗ 𝑖𝑑𝑓 𝑡2 , ⋯ , 𝑡𝑓 𝑡𝑁 , 𝑑𝑥 ∗ 𝑖𝑑𝑓 𝑡𝑁 . (4)

The similarity between two documents 𝑑𝑖 and 𝑑𝑗 is obtained as the cosine of the

angle between the two document vectors 𝑣′𝑖 and 𝑣′𝑗 , and is referred to as the cosine

similarity. 𝐷𝑆𝑖𝑚 𝑑𝑖 , 𝑑𝑗 (Document Similarity,0 ≤ 𝐷𝑆𝑖𝑚 ≤ 1.0) is defined using the

cosine similarity as

𝐷𝑆𝑖𝑚 𝑑𝑖 , 𝑑𝑗 =
𝑣′𝑖 𝑣′𝑗

 𝑣′𝑖 𝑣′𝑗
 . (5)

To calculate the similarity between all documents (containing requirements, source

code files and revisions), a document-term matrix 𝐷𝑇𝑀𝑀×𝑁 with 𝑀 rows and 𝑁 col-

umns is generated. Here 𝑀 represents the number of documents and 𝑁 represents the

total number of terms in the documents. The matrix is defined as

𝐷𝑇𝑀𝑀×𝑁 =
𝑡𝑓 𝑡1 , 𝑑1 ∗ 𝑖𝑑𝑓 𝑡1 ⋯ 𝑡𝑓 𝑡𝑁 , 𝑑1 ∗ 𝑖𝑑𝑓 𝑡𝑁

⋮ ⋱ ⋮
𝑡𝑓 𝑡1 , 𝑑𝑀 ∗ 𝑖𝑑𝑓 𝑡1 ⋯ 𝑡𝑓 𝑡𝑁 , 𝑑𝑀 ∗ 𝑖𝑑𝑓 𝑡𝑁

 . (6)

The row of the matrix indicates the document vector mentioned in Formula (4). We

calculate similarities between all documents using the document-term matrix.

3.3 Similarity-Based Score

In this approach, we calculate two kinds of relevance scores for each candidate link.

First, we describe the first score in this section. In accordance with similarity-based

methods, we directly calculate the similarity score between requirements and source

code. We call this first score the “similarity-based score.” Basically, 𝐷𝑆𝑖𝑚 is set to

the similarity-based score. However, if the source code comments contain a require-

ment name, we set the maximized score (i.e., 1.0) to the similarity-based score.

Here, 𝑅 represents a set of requirements and 𝐶 is a set of source code files (𝑅 , 𝐶 ⊂
𝐷). The similarity-based score 𝑆𝐵𝑆𝑐𝑜𝑟𝑒 between requirement 𝑟𝑖 and source code file

𝑐𝑗 (𝑟𝑖 ∈ 𝑅 , 𝑐𝑗 ∈ 𝐶) is defined as

𝑆𝐵𝑆𝑐𝑜𝑟𝑒 𝑟𝑖 , 𝑐𝑗 =
1.0 (if comments of 𝑐𝑗 contain the name of 𝑟𝑖)

𝐷𝑆𝑖𝑚 𝑟𝑖 , 𝑐𝑗 (in other cases)
 . (7)

3.4 Calculating the Log-Based Score

Additionally, we calculate the second relevance score using the log-based method.

We call the second score “log-based score.” Because revisions contain file paths of

the modified source code files, we can indirectly associate requirements with source

code files by calculating the similarity between requirements and revisions. The log-

based score is calculated by two elements: the similarity between requirements and

revisions and the weight of the source code files for each revision.

Here 𝐿 represents a set of revisions (𝐿 ⊂ 𝐷). The number of source code files mod-

ified in revision 𝑙𝑘 (𝑙𝑘 ∈ 𝐿) is represented as 𝑚 𝑙𝑘 . Then the weight of source code

files 𝑐𝑗 in revision 𝑙𝑘 is defined as

𝑊𝑒𝑖𝑔𝑕𝑡 𝑐𝑗 , 𝑙𝑘 =

1

𝑚 𝑙𝑘
 (if 𝑐𝑗 is modified in 𝑙𝑘)

0 (in other cases)

 . (8)

Therefore, the log-based score 𝐿𝐵𝑆𝑐𝑜𝑟𝑒 between requirement 𝑟𝑖 and source code file

𝑐𝑗 is defined as

𝐿𝐵𝑆𝑐𝑜𝑟𝑒 𝑟𝑖 , 𝑐𝑗 = 𝐷𝑆𝑖𝑚 𝑟𝑖 , 𝑙𝑘 ∗ 𝑊𝑒𝑖𝑔𝑕𝑡 𝑐𝑗 , 𝑙𝑘

𝐺

𝑘=1

 . (9)

𝐺 represents the number of revisions. We calculate 𝐷𝑆𝑖𝑚 and 𝑊𝑒𝑖𝑔𝑕𝑡 for each revi-

sion and sum up their multiplied values.

3.5 Sorting Algorithms

After calculating scores, we present candidate links of the target specified by users.

Here the target is either the requirement or source code file. Candidate links are sorted

by our algorithm. The kind of target determines which algorithm is used.

If the target is a source code file, we selectively use two kinds of score depending

on the presence of the revision history. For a file without revision histories in the

configuration management log (i.e., all log-based scores are 0), the candidate links are

sorted in descending order of the similarity-based score. On the other hand, for file

with a revision history, the links are sorted in descending order of the log-based score.

If the target is a requirement, we basically use the similarity-based score. First,

candidate links are sorted in descending order of the similarity-based score. However,

on the other hand, candidate links get preferential rights if they have the highest log-

based score in the group of candidate links when targeting any source code files. Can-

didate links with preferential rights are prior to links without the rights. (i.e., even if

the similarity-based score is low, the link with the preferential right is preferentially

presented to users.) Then candidate links with preferential rights are sorted in des-

cending order of the log-based score.

3.6 Link Recommendations

Our tool presents sorted candidate links to users, and then the users validate the links

starting from the top. Because their judgments are provided as feedbacks to the tool,

our tool focuses on the call relationships of the source code file of the judged link.

Here the call relationships of the source code file indicate the relationships of methods

in the file. A validated correct link recommends other candidate links based on call

relationships. We call this type of recommendation a “Link Recommendation.”

In addition to the two types of relevance scores, candidate links have other two

values: “recommendation count by caller” and “recommendation count by callee.”

These values increase when recommended by a correct link. For example, in Figure 2,

if the link between the requirement “Recover links” and the source code file “LinkRe-

cover.java” is judged as correct, the link recommends a candidate link between the

requirement “Recover links” and the source code file “RelevanceCalculator.java”

because the method “recover()” in the file “LinkRecover.java” is the caller of the

method “calculate()” in the file “RelevanceCalculator.java.” Then the value “recom-

mendation count by caller” of the candidate link increases by one. Likewise, if a link

with the file “Link.java” is judged as a correct link, the value “recommendation count

by callee” of the candidate link increases by one.

3.7 Sorting Algorithm with User Feedback

Every time the candidate link is judged as correct, the remaining candidate links are

sorted by the appropriate algorithm that extends the algorithms described in section

3.5 by two values about the link recommendation.

First, the links are sorted in descending order of the value that multiplies “recom-

mendation count by caller” and “recommendation count by callee.” Second, the links

with the same multiplied value are arranged in descending order of the value obtained

by adding two values about the link recommendation. Third, the links with the same

addition are sorted by the algorithm mentioned in the section 3.5.

As mentioned in the section 3.5, for a file with a revision history, the links are

sorted in descending order of the log-based score. However, if a candidate link that

has not been recommended is judged as incorrect, the kind of relevance scores that is

used to sort is changed. This occurs whenever a link is judged as incorrect.

4 Evaluation

4.1 Overview

To validate our method, we carried out experiments targeting an enterprise system

developed by a Japanese company. Although this system has a very large scale, its

subsystem has 726 known correct links. Hence, the following experiments target this

subsystem, which has more than 80KLOC. We recovered traceability links between

192 requirements and 694 source code files where the requirements are extracted

from the requirement specification documents. Source code files are implemented by

Java. We use 7090 revisions of the Subversion log. Requirements, source code com-

ments and revision messages are written in Japanese.

To evaluate the improvement in recall and precision, we conducted three experi-

ments. First, we recovered links by using only the similarity-based method. Second,

we recovered links by using the method combining the similarity-based method and

the log-based method. Third, we conducted an experiment evaluating the effective-

ness of the link recommendation.

For each experiment, we recovered links by repeating the following cycle.

1. Specify a target (requirement or source code file).

2. Validate candidate links of the specified target starting from the top.

3. Validation of the target is complete when the validation count reaches the allowa-

ble validation count or all correct links of the target are recovered

Here the allowable validation count indicates how many candidate links users can

validate in one cycle. For example, if the allowable validation count is one, users

validate only the first presented link. The cycle is repeated as many times as the num-

ber of targets. Therefore, we repeated the cycle 192 times when targeting all require-

ments and also repeated 694 times when targeting all source code files. The recovery

targeting requirements is independent of the recovery targeting source code files.

Therefore, we can determine the recall and precision for both targeting requirements

and targeting source code files. Recall, precision and F-measure (comprehensive

measure of recall and precision) are defined as

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑒𝑑 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑙𝑖𝑛𝑘𝑠

𝑎𝑙𝑙 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑙𝑖𝑛𝑘𝑠
 0 ≤ 𝑟𝑒𝑐𝑎𝑙𝑙 ≤ 1.0 , (10)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑒𝑑 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑙𝑖𝑛𝑘𝑠

𝑎𝑙𝑙 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑒𝑑 𝑙𝑖𝑛𝑘𝑠
 0 ≤ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ≤ 1.0 , (11)

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ∗
𝑟𝑒𝑐𝑎𝑙𝑙 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑟𝑒𝑐𝑎𝑙𝑙 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (0 ≤ 𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 ≤ 1.0) . (12)

Because the correct links are known, all experiments were fully automated. When

targeting requirements, we specified the requirement as the target in alphabetical or-

der of the requirement name. However, the target order affects the accuracy when the

targets are source code files and the link recommendation is used. Therefore, when

targeting source code files in experiments, we tried using two kinds of orders: the best

order (descending order of the highest relevance score of the candidate links) and the

worst order (ascending order of the highest relevance score of the candidate links).

Figure 5 shows the experimental results for the recall and precision for each target

where the horizontal axis indicates the allowable validation count and the vertical axis

indicates the value of recall or precision. Table 1 lists the results with the highest F-

measure for each method. In all methods, the highest F-measure occurs when the

targets are source code files and the allowable validation count is two.

Fig. 5. Recall and precision

Table 1. Recall and precision when F-masure is highest

Method Recall Precision F-measure

Similarity-Based Method 0.602 0.411 0.488

Similarity-Based Method + Log-Based Method 0.712 0.518 0.599
Similarity-Based Method + Log-Based Method
+ Link Recommendation Using the Best Order

0.804 0.648 0.718

Similarity-Based Method + Log-Based Method
+ Link Recommendation Using the Worst Order

0.751 0.571 0.648

4.2 First Experiment: Recovering by the Similarity-Based Method

First, we recovered links using only the similarity-based method, which used the simi-

larity-based score to sort candidate links. Based on the results in Table 1, we can an-

swer the first research question.

RQ1: How accurately can we recover links by the similarity-based method?

The similarity-based method recovered links with a recall of 60.2% and a precision of

41.1%. This accuracy is not sufficiently high. However, 42.1% of the recovered cor-

rect links are the links with source code files that have no revision histories. There-

fore, the similarity-based method can cover the weakness of the log-based method.

4.3 Second Experiment: Recovering by the Combined Method

To confirm the effectiveness of combining the similarity-based method with the log-

based method, we recovered links by using the combined method, which used both

the similarity-based score and the log-based score. In all graphs of Figure 5, the com-

bined method provides improved results compared to the similarity-based method.

Thus, we can answer the second research question based on the results in Table 1.

RQ2: How much does the addition of the log-based method improve the recovery

accuracy?

Adding the log-based method improved the recall by an 11.0 percent point (60.2% to

71.2%) and the precision by a 10.7 percent point (41.1% to 51.8%). Then, the F-

measure was improved by 0.111 (0.488 to 0.599). Moreover, the average similarity-

based score of links recovered newly by the combined method is 0.227, whereas the

average score of links recovered by the similarity-based method is 0.635. Therefore,

the log-based method can also cover the weakness of the similarity-based method.

4.4 Third Experiment: Effectiveness of Link Recommendations

We recovered links by using the combined method with link recommendations to

evaluate the effectiveness. Then we tried using two kinds of orders: the best order and

the worst order. In Figure 5, the method with link recommendations is superior to that

without link recommendations for all conditions except when the targets are require-

ments and the allowable validation count is one.

When targeting requirements, the link recommendation becomes effective from the

second presented candidate link because the first presented link is not recommended

by any other link. On the other hand, when targeting source code files, the link rec-

ommendation is effective from the first presented link excepting for the first targeted

source code file, because the first presented link can be recommended by a link that

has already been validated when targeting different source code files. Therefore, when

targeting source code files, the targeting order affects the accuracy because the pres-

entation order depends on the validation results of other source code files.

Thus, the experiments can answer the third research question.

RQ3: How much does the addition of link recommendations improve the recov-

ery accuracy?

The link recommendation improved the recall by a 9.2 percent point (71.2% to

80.4%) and the precision by a 13.0 percent point (51.8% to 64.8%) when using the

best order. Then, the F-measure was improved by 0.119 (0.599 to 0.718). On the other

hand, when using the worst order, the effectiveness decreased in comparison with

using the best order. Hence, the link recommendation is most effective when the cor-

rect link with the high relevance score recommends the correct link with the low re-

levance score. Therefore, when we put on emphasis on the accuracy, we should prefe-

rentially target source code files that have candidate links with the high relevance

score. In the experiment, we recovered many additional links that have low relevance

scores by applying the link recommendation.

4.5 Threats to Validity

The fact that we validated our method by applying to only one software product is a

threat to the external validity. The improvement in accuracy depends on the quality of

the revision messages and software structure because our method employs the confi-

guration management log and call relationships. Thus, we should evaluate the rela-

tionship between these factors for other software and the effectiveness of our method.

In our evaluation, we independently conducted the recovery targeting requirements

and the recovery targeting source code files. However, in an actual application, users

randomly specify targets based on their needs. The targeting consistency may affect

the accuracy of the recovering links, which is a threat to the internal validity. There-

fore, we should conduct an experiment with random targeting in the future.

Additionally, our method uses user feedback to improve the accuracy, which may

result in human error. We should conduct experiments by subjects to evaluate the

impact of the environment for real applications of our method.

5 Related Work

Arkley et al. conducted a survey of nine software projects using questionnaires and

interviews [7], and identified issues of traceability including usability. As these find-

ings suggest, we should improve usability of our tool because validation of the candi-

date links takes significant costs. For example, supplemental information is necessary

to validate links (e.g., rationales of the high relevance score, information about re-

commenders, etc.).

Mäder et al. conducted a controlled experiment with 52 subjects performing real

maintenance tasks on two third-party development projects where half of the tasks

were with and the other half were without traceability [1]. They showed that on aver-

age subjects with traceability perform 21% faster and create 60% more correct solu-

tions. Their empirical study affirms the usefulness of requirements traceability links.

Some studies have compared the representation between requirements and source

code to recover requirements traceability links [2,3,4,5,6,17,18,19,20] using different

techniques, such as the vector space model, the probabilistic model, the latent seman-

tic index and keyword matching with a regular expression. Here we propose extended

method based on the method using the vector space model.

Chen et al. proposed an approach that combines three supporting techniques, Regu-

lar Expression, Key Phrases, and Clustering, with the vector space model to improve

the traceability recovery performance [8]. Except for Clustering, their supporting

techniques depend on the representation similarity between the requirements and

source code files. On the other hand, our elemental techniques are independent of the

representation similarity with source code files.

Wang et al. proposed a feature location approach that supports multi-faceted inter-

active program exploration [9]. Feature Location is a technique similar to recovering

requirements traceability links for targeting requirements. Their approach automati-

cally extracts multiple syntactic and semantic facets from candidate program ele-

ments. Then users can interactively group, sort, and filter feature location results by

facets. Although our method is also an interactive method using user feedback, we

require users only to validate correctness of candidate links.

Ghabi et al. proposed an approach to validate links through call relationships with-

in the code [10]. They inputted set of candidate links with certain reliability and ap-

plied filtering by call relationships all at once, whereas we use only correct links vali-

dated by users and interactively apply the link recommendation by call relationships.

6 Conclusion and Future Work

We have proposed a traceability recovery method that extends the similarity-based

method using two elemental techniques. The first technique is the log-based method

using the configuration management log. The second is link recommendations using

user feedback and the call relationships. We applied our method to an actual product

and recovered links between 192 requirements and 694 source code files, confirming

the effectiveness of applying two elemental techniques simultaneously. In the future,

we plan conduct the additional experiments described in section 4.5, and investigate

the applicability of other code relationships for link recommendations.

References

1. P. Mäder and A. Egyed. : Assessing the effect of requirements traceability for software

maintenance. In: the 28th IEEE International Conference on Software Maintenance

(ICSM’12), pp.171-180 (2012)

2. G. Antoniol, G. Canfora, G. Casazza, A. De Lucia and E. Merlo. : Recovering traceability

links between code and documentation. In: IEEE Transactions on Software Engineering,

vol.28, no.10, pp.970-983 (2002)

3. A. Marcus and J. I. Maletic. : Recovering documentation to source code traceability links

using latent semantic indexing. In: the 25th International Conference on Software Engi-

neering (ICSE’03), pp.125–135 (2003)

4. B. Dagenais and M. P. Robillard. : Recovering traceability links between an API and its

learning resources. In: the 34th International Conference on Software Engineering

(ICSE’12), pp.47-57 (2012)

5. X. Chen. : Extraction and visualization of traceability relationships between documents

and source code. In: the 25th IEEE/ACM International Conference on Automated Soft-

ware Engineering, pp.505–510 (2010)

6. A. De Lucia, R. Oliveto, and G. Tortora. : ADAMS re-trace: traceability link recovery via

latent semantic indexing. In: the 30th International Conference on Software Engineering

(ICSE’08), pp.839–842 (2008)

7. P. Arkley and S. Riddle. : Overcoming the traceability benefit problem. In: the 13th IEEE

International Conference on Requirements Engineering (RE’05), pp.385-389 (2005)

8. X. Chen and J. Grundy. : Improving automated documentation to code traceability by

combining retrieval techniques. In: the 26th IEEE/ACM International Conference on Au-

tomated Software Engineering, pp.223–232 (2011)

9. J. Wang, X. Peng, Z. Xing and W. Zhao. : Improving feature location practice with multi-

faceted interactive exploration. In: the 35th International Conference on Software Engi-

neering (ICSE’13), pp.762-771 (2013)

10. A. Ghabi and A. Egyed. : Code Patterns for Automatically Validating Requirements-to-

Code Traces. In: the 27th IEEE/ACM International Conference on Automated Software

Engineering, pp.200-209 (2012)

11. R. Tsuchiya, H. Washizaki, Y. Fukazawa, T. Kato, M. Kawakami and K. Yoshimura. : Re-

covering traceability links between requirements and source code in the same series of

software products. In: the 17th International Software Product Line Conference

(SPLC’13), pp.121-130 (2013)

12. R. Pooley and C. Warren. : Reuse through requirements traceability. In: the 3rd Interna-

tional Conference on Software Engineering Advances (ICSEA’08), pp.65-70 (2008)

13. G. Salton and M. J. McGill. : Introduction to modern information retrieval. McGraw-Hill,

New York (1983)

14. Apache Subversion, https://subversion.apache.org/

15. Git, http://git-scm.com/

16. Java, https://www.java.net/

17. H. Jiang, T. N. Nguyen, I. Chen, H. Jaygarl and C. K. Chang. : Incremental latent semantic

indexing for automatic traceability link evolution management. In: the 23rd IEEE/ACM

International Conference on Automated Software Engineering, pp.59-68 (2008)

18. A. De Lucia, R. Oliveto, and G. Tortora. : IR-based traceability recovery processes: an

empirical comparison of "one-shot" and incremental processes In: the 23rd IEEE/ACM In-

ternational Conference on Automated Software Engineering, pp.39-48 (2008)

19. C. McMillan, D. Poshyvanyk and M. Revelle. : Combining textual and structural analysis

of software artifacts for traceability link recovery. In: the 2009 ICSE Workshop on Tra-

ceability in Emerging Forms of Software Engineering, pp.41-48 (2009)

20. R. Settimi, O. BenKhadra, E. Berezhanskaya and S. Christina. : Goal-centric traceability

for managing non-functional requirements. In: the 27th International Conference on Soft-

ware Engineering (ICSE’05), pp.362-371 (2005)

https://subversion.apache.org/
http://git-scm.com/

