
Iterative Process to Improve GQM Models with
Metrics Thresholds to Detect High-risk Files

Naohiko Tsuda, Masaki Takada, Hironori Washizaki,
and Yoshiaki Fukazawa

Dept. Computer Science and Engg.
Waseda Univ., 3-4-1 Ohkubo

Shinjuku-ku, Tokyo, 169-8555, Japan
Email: 821821@toki.waseda.jp,{washizaki, fukazawa}@waseda.jp

Shunsuke Sugimura, Yuichiro Yasuda,
and Masanao Futakami

Komatsu Ltd. Development Division
ICT Development Center

3-25-1, Shinomiya, Hiratsuka-shi
Kanagawa, 254-8555, Japan

Abstract—We propose an iterative process to improve GQM
models with metrics thresholds to detect high-risk files.

Keywords—Software Maintenance, Software Reusability, Soft-
ware Measurement, Threshold, GQM.

I. PROPOSAL: OUR ITERATIVE PROCESS

The presence of low maintainable (e.g., not understandable
or changeable) files prevents reusing systems and future ex-
tensions. Although automatic detection of such high-risk files
reduces the burden on inspectors, it is unclear how to define the
optimal evaluation models for the detection. Fig. 1 overviews
our iterative process to define and improve GQM models with
metrics thresholds to detect high-risk files.

Fig. 1. An Overview of our iterative process

A. Step 1: Create a GQM Model

A team of developers, inspectors, etc. must create a Goal-
Question-Metrics (GQM) model [1] to clarify what to measure.
The most important aspect is that the team is comprised of
experienced team members with respect to the target domain
or project. First, set goals for the quality characteristic of the
source code. Next, subdivide experts’ tacit knowledge for code
inspection into multiple viewpoints (questions (Qi)). Finally,
clarify the metrics related to eachQi.

B. Step 2: Define Conditional Expressions (CEs)

The team must define how to interpret the metrics values
corresponding toQi as CEi, e.g. (M1 ≤ T1||M2 ≤ T2).
Although thresholds-based CEs are easy to interpret, deciding
the general and concrete thresholds is impractical because the
context of the domain and project affects the distribution of
the metrics [2]. In our process, Step 2 defines thresholds-based
CEs without concrete values, while Step 3 determines concrete
values for a specific project. Thus, our process provides cross-
project reusable CEs and projects-specific valid thresholds.

C. Step 3: Optimize the Thresholds for CEs

1) Step 3.1: Obtain Labeled Training Data for Supervised
Learning: Experts conduct a code inspection of sample files
(training data) using a check-list (questions) defined by GQM.
When the experts consider a file to be low (high) risk, they
assign it an OK (NG) label to the file.

2) Step 3.2: Search the Optimal Thresholds with the High-
est Degree of Expert-approximation:In this paper, the de-
gree of expert-approximation means the degree of similarity
between an automatic evaluation by aCEi and the experts’
inspection results for aQi. Metaheuristic algorithms (e.g.,
simulated annealing (SA)) can search for optimal thresholds.
Then the problem becomes how to quantify the degree of
expert-approximation. Here the F1 score or Cohen’s kappa
between training labels and predicted (automatically evaluated)
labels indicates the degree.

D. Step 4: Analyze the Results in Step 3 for Improvement

A low degree of expert-approximation indicates that the
CE and thresholds must be redefined. We classify the possible
causes into four categories and describe how to improve them.

1) Inappropriate Training Data: When the ratio of OK
to NG in the training labels ofQi is biased, an expert-
approximation will fail. Recollecting training data forQi

should resolve this issue.

2) Mismatch of Experts’ Viewpoints and Metrics:If ex-
perts and measurement tools handle different information, the
definitions of the metrics and questions should be redefined.

3) Inappropriate GQM Model: An ambiguous question
causes an inappropriate code inspection. Such questions should
be subdivided into more specific questions. However, too
many questions increase the cost of a check-list-based code
inspection. Thus, similar questions should be integrated. After
that, add or reduce the metrics as necessary.

REFERENCES

[1] V.R. Basili, et al.,“Goal Question Metric Approach,”Encyclopedia of
Software Engineering, John Wiley & Sons, Inc., , pp. 528-532, 1994.

[2] F. Zhang, et al.,“How Does Context Affect the Distribution of Software
Maintainability Metrics?”, ICSM’13, 2013.

