
TESEM: A Tool for Verifying Security Design Pattern Applications
by Model Testing

Abstract—Because software developers are not necessarily
security experts, identifying potential threats and vulnerabilities
in the early stage of the development process (e.g., the
requirement- or design-phase) is insufficient. Even if these issues
are addressed at an early stage, it does not guarantee that the
final software product actually satisfies security requirements. To
realize secure designs, we propose extended security patterns,
which include requirement- and design-level patterns as well as a
new model testing process. Our approach is implemented in a
tool called TESEM (Test Driven Secure Modeling Tool), which
supports pattern applications by creating a script to execute
model testing automatically. During an early development stage,
the developer specifies threats and vulnerabilities in the target
system, and then TESEM verifies whether the security patterns
are properly applied and assesses whether these vulnerabilities
are resolved.

Keywords-Component; Security Patterns; Model Testing; Test-
Driven Development; UML;

I. INTRODUCTION
Due to the increased number of business services on open

networks and distributed platforms, security has become a
critical issue. Software must be supported by security measures
[1], which are addressed in every phase of development from
requirements engineering to deployment. However, threats and
vulnerabilities within a system cannot be sufficiently identified
during the early development stage. Due to the vast number of
security concerns and the fact that not all software engineers
are security specialists, creating software with adequate
security measures is extremely difficult.

Patterns, which are reusable packages that incorporate
expert knowledge, represent frequently recurring structures,
behaviors, activities, processes, or “things” during the software
development process. Many security patterns have been
proposed to resolve security issues [1]. For example, Bschmann
et al. proposed 25 design-level security patterns [2]. By
referring to these patterns, a developer can efficiently realize
software with high security level.

Although UML-based models are widely used for design,
especially for model-driven software development, whether
patterns are applied correctly is often not verified [1]. It is
possible to apply a security pattern inappropriately.
Additionally, properly applying a security pattern does not
guarantee that threats and vulnerabilities are resolved. These
issues may result in security damage. Thus, we propose an
application to verify security patterns using model testing.

Our method confirms that security patterns are properly
applied and assesses whether vulnerabilities are resolved.
Although we have already suggested a conceptual approach to
verify security design pattern applications [3], this approach
does not involve tool support that a developer can implement
for automatic verification. Moreover, we previously did not

evaluate our approach. Consequently, we suggest a new
verification tool that supports pattern applications and evaluate
our method via experiments.

Our research aims to answer the following four Research
Questions (RQs):

• RQ1: Do developers inappropriately apply patterns?

• RQ2: Can our method detect incorrect applications of
specific security design patterns in a design model?

• RQ3: Can our method detect the presence of vulnerabilities
identified at the requirement stage before and after applying
patterns?

• RQ4: Does our method help developers realize secure?

Because a security pattern alone does not provide
systematic guidelines with respect to applications, herein we
formally extend existing security patterns using OCL
expressions. Then we propose a new testing process to verify
correct pattern applications and a tool called TESEM1 (Test
Driven Secure Modeling Tool) to support model testing
automatically. Our method provides three major contributions:

• New extended security patterns using Object Constraint
Language (OCL) expressions, which include requirement-
and design-level patterns

• A new model-testing process based on Test-Driven
Development (TDD) to verify appropriate pattern
applications and the existence of vulnerabilities using these
extended patterns

• A tool called TESEM that supports pattern applications by
creating a script to execute model testing automatically

This paper is organized as follows. Section II describes the
background and problems with security software development.
Section III details our verification method and the architecture
of TESEM. Section IV shows an example of the verification
process using TESEM. Section V evaluates the RQs by
applying our method and discussing its impact. Section VI
describes the threats to validity. Finally, Section VII
summarizes this paper.

II. BACKGROUND AND PROBLEMS
In this section, we overview common existing techniques

for secure design.

A. Security Requirement Patterns (SRPs)
A security requirement pattern (SRP) is an existing

technique to identify assets, threats, and countermeasures [4].

1 Source code of TESEM is open to the public at [https://github.com/takanorioo/TESEM].
Moreover its online demo targeting EMS is available at
[http://www31168ue.sakura.ne.jp/uml].

A security pattern is reusable as a security package and
includes security knowledge, allowing software developers to
design secure systems like a security expert. Various types of
security patterns exist. For example, SRPs are used at the
requirement level, while security design patterns (SDPs), which
are described in Section C, are applied at the design stage level.

The “Structure” of a SRP uses the Misuse case with the
Assets and Security Goal (MASG) model [5], which is an
extension of the misuse case [6] that provides the structure of
assets, threats, and countermeasures at the requirement level.
The MASG model can model attackers, attacks, and
countermeasures as well as normal users and their requirements.

Fig. 1. Sample MASG model for a shopping website

Figure 1 shows a typical example of the MASG model for a
partially modeled shopping website. The function “make a
payment” has several assets, which could be threatened. In the
model, “Disclosure” is a threat for “make a payment”, while
“personal information” is an asset. “Spoofing”, “Elevation of
privilege”, and “SQL Injection” enable Disclosure. In addition,
each countermeasure, such as “I&A (Identification and
Authentication)”, “Authorization”, or “Input and Data
Validation”, effectively mitigates threats. Although the MASG
model helps comprehensively detect security issues at the
requirement level, it does not indicate whether the identified
threats actually exist in the software system.

B. Security Design Patterns (SDPs)
SDPs are an established technique to satisfy security

specifications. A SDP includes “Name”, “Context”, “Problem”,
“Solution”, “Structure”, “Dynamics”, “Consequences”, and
“See Also”. The pattern descriptions can be reused in multiple
systems. As examples of SDPs, Bschmann et al. (2006)
proposed 25 design-level security patterns [2].

Fig. 2. Structure of RBAC

Figure 2 shows the structure of Role Based Access Control
(RBAC) as an example of a SDP. The RBAC pattern, which is
a representative pattern for access control, describes how to
assign precise access rights to roles in an environment where
access to computing resources must be controlled to preserve
confidentiality as well as the availability requirements.

C. Motivating example
As an example of an applied pattern, Fig. 3 shows part of a

UML class diagram that realizes a payment process on the Web.

Fig. 3. Part of a class diagram for “make a payment”

A SDP alone cannot support the development lifecycle
because it lacks systematic guidelines with respect to
applications in the entire lifecycle [7]. Consequently, formally
describing what rules must be verified is difficult [8][9]. In
addition, most SDPs do not specifically mention systematic
guidelines until the relations with Security Requirements are
defined. Under these conditions, even if a developer intends to
apply a SDP such as RBAC (Fig. 2) to the structural model
(Fig. 3), it may be inappropriately applied to an identified
threat. Additionally, the appropriateness of the applied pattern
to the model and the pattern’s ability to resolve vulnerabilities
are often inadequately verified. These situations may cause
incorrect pattern applications and unresolved vulnerabilities.

Fig. 4. Example of an inappropriate pattern application

Figure 4 shows an example of an inappropriate pattern
application where RBAC is applied to the model shown in Fig.
3. Due to the lack of systematic guidelines with respect to

 6

"Spoofing", "Elevation of privilege", and “SQL Injection” enable Disclosure. In addition, each

countermeasure, such as “I&A (Identification and Authentication)”, “Access Control”, or “Input

and Data Validation”, are effective to mitigate threats. Although the MASG model helps explore

security issues comprehensively at the requirement level, it does not indicate whether the

identified threats actually exist in the developing system.

B. Security Design Patterns

To satisfy security specifications, the use of Security Design Patterns (SDPs) is an

established technique. The SDP includes “Name”, “Context”, “Problem”, “Solution”,

“Structure”, “Consequences”, and “See Also”. The pattern descriptions can be reused in multiple

systems. As examples of SDP, reference [2] shows 25 design-level security patterns.

proposed to address security concerns. UMLsec is defined in
the form of a UML profile using standard UML extension
mechanisms. Stereotypes with tagged values are used to
formulate the security requirements, and then the constraints
are used to verify whether the security requirements hold
during specific types of attacks. However, developers who are
not security specialists have difficulty in employing UMLsec
and must receive special training, which involves both time and
money.

B. Security Requirement Patterns
The security requirement pattern is an existing technique to

identify assets, threats, and countermeasures [7]. A security
pattern is reusable as a security package and includes security
knowledge, allowing software developers to design secure
systems like a security expert. Various types of security
patterns exist. For example, the security requirement pattern
(SRP) is used at the requirement level, while the security
design pattern, which is described in Section C, is applied at
the design stage level.

The “Structure” of SRP uses the Misuse case with the
Assets and Security Goal (MASG) model [8], which is an
extension of the misuse case [9] that provides the structure of
assets, threats, and countermeasures at the requirement level.
This enables developers to model attackers, attacks, and
countermeasures as well as normal users and their requirements.
In addition to the elements of misuse case diagrams, the MASG
model consists of the following elements:

� Data assets: Assets to be protected
� Use case assets: Functions related to assets
� Security goals: Reasons to protect assets

Identifying assets improves threat recognition, while
identifying security goals determines what security measures
are important in the target system. The MASG model also
contains a security requirement analysis process. First, the
assets of the system are identified, and the security goals are
defined. Next, threats that may violate the goals are defined,
and security countermeasures against these threats are
determined [7]. Finally, the security countermeasures that
satisfy the security goals are confirmed.

Figure 1. Sample MASG model for a shopping website

Figure 1 shows a typical example of a MASG model: a
partially modeled shopping website. The function “make a
payment” has several assets, which could be threatened. In the
model, "Disclosure" is a threat for "make a payment", while
"personal information" is an asset. "Spoofing", "Elevation of
privilege", and “SQL Injection” enable Disclosure. In addition,
each countermeasure, such as “Identification and
Authentication (I&A)”, “Access Control”, or “Input and Data
Validation”, effectively mitigate these threats. Although the
MASG model comprehensively explores security issues at the
requirement level, it does not determine whether the identified
threats actually exist in the design model.

C. Security Design Patterns
To satisfy security specifications, the use of Security

Design Patterns (SDPs) is an established technique. The SDP
includes “Name”, “Context”, “Problem”, “Solution”,
“Structure”, “Consequences”, and “See Also”. The pattern
descriptions can be reused in multiple systems.

Figure 2. Structure of SDP� (Password Design and Use pattern)

Figure 3. Structure of SDP� (RBAC pattern)

Figures 2 and 3 show examples of the SDP structure. The
Password Design and Use pattern describes the best security
practice to design, create, manage, and use password
components to support the I&A requirements. In addition to
configuring or managing passwords, engineers and
administrators use password constraints to build or select
password systems. The RBAC pattern, which is a
representative pattern for access control, describes how to
assign precise access rights to roles in an environment where
access to computing resources must be controlled to preserve
confidentiality and the availability requirements.

D. Motivating example
As an example of a pattern application, Fig. 4 shows a

portion (“make a payment”) of a UML class diagram to realize
a payment process on the Web. A SDP alone is insufficient to

<<asset>>
make a

payment

<<misuse>>

Disclosure

<<misuse>>
Elevation of
privilege

<<misuse>>

Spoofing

<<misuse>>

SQL
Injection

enables

enables

enables
<<countermeasure>>

Input and Data
Validation

prevents

<<countermeasure>>

Access Control

<<countermeasure>>

I&A

prevents

prevents

include

include

include

User

Attacker

Attacker

Attacker

<<asset>>
personal info

<<goal>>
keep personal info

secret

<<goal>>

confidentiality

op
era

tio
nal

ize
s

operatio
nalize

s

operationalizes

cycle, it is the task of the designer to ensure that all required
security requirements are included in the specifications and
that adequate protection mechanisms are implemented to
refer those specifications. In the following sections we will
review several approaches which refer to this demand.

A. Specification Techniques
Several specification techniques for representing

different security policies in a model-driven software
development process have been proposed. SecureUML [20]
is a modeling language based on RBAC, used to formalize
access control requirements and integrate them into
application models. It is basically a RBAC language with
authorization constraints that are expressed in Object
Constraint Language (OCL).

UMLSec [17] is an UML extension that enables
specifying security concerns in the functional model. It uses
standard UML extension mechanisms; stereotypes with
tagged values are used to formulate the security
requirements, and the constraints are used to check whether
the security requirements hold in the presence of particular
types of attacks.

B. Access Control Patterns
An alternative to refer security policies is by using

security patterns. Security patterns accumulate extensive
security knowledge and provide guidelines for secure
system development and evaluation.

Access control is one of the core issues in systems and
database security. In an environment with resources whose
access has to be controlled, authorization patterns can be
used to describe, for each entity, the resources it may have
access to, and which access privileges it has. Figure 1
describes the authorization pattern as defined in [19]. The
Authorization_rule association, together with the Right
association class, defines the access privileges of the Subject
to the related ProtectionObject. The Right association class
includes the type of access allowed (e.g. read, write,
execute), a predicate representing a condition that must be
true for the authorization to hold, and a copy flag signifying
a condition that indicates whether the right can be
transferred or not. An operation checkRights can be used in
the Subject or Object to check the validity of a request.

The Role-Based Access Control (RBAC) pattern [19] is
a specialization of the authorization pattern that has become
the most commonly used for access control since it reduces
the cost of administering access control policies and the
amount of errors in the process. RBAC is derived from the
notion that in organizations, users have different roles that
require different skills and responsibilities, and therefore
they should have different rights of access to data, which are
based on their role. Consequently, the RBAC
mechanism [3] describes for each user which privileges they
can acquire based on their roles or their assigned tasks. To
support the RBAC mechanism at the analysis and design
stages of the development lifecycle, a corresponding pattern
was developed [19]. The RBAC pattern is shown in Figure
2. Users are assigned to Roles, while Roles are given Rights
that are permitted to Users in that Role. As in the

authorization pattern, the association class Right defines the
access types that a user within a Role is authorized to apply
on the ProtectionObject. Correct implementation of the
RBAC pattern will ensure effective and secure access
control to the database.

C. Secure Software Development with Security Patterns
Security patterns alone are not sufficient for supporting

the development lifecycle, since they do not provide
systematic guidelines regarding to their application
throughout the entire software lifecycle. In order to provide
such information to the designers, several methodologies for
developing secure software were proposed in the literature.
Fernandez et al. [6] proposed a methodology for integrating
security patterns into each one of the software development
stages. Other methodologies present the use of the aspect-
oriented software design approach to model security
patterns as aspects and weave them into the functional
model [9] [12], or the use of agent oriented security pattern
language together with the Tropos methodology to develop
secure information systems [10] [11].

D. Patterns Validation
Although some of the methods mentioned above provide

tools for checking some aspects of the model, they do not
have the ability to validate the correct application of the
patterns, which will ensure generation of a secure
application or a database scheme. Without systematic
validation of the involved patterns, we risk in having design
problems that will propagate throughout the development
process.

To the best of our knowledge, the only work in this area
is of Peng, Dong, and Zhao [21], which presents a formal
verification method to analyze the behavioral correctness of
a design pattern implementation. Their method exploits the
partial order relationship between the sequence diagram of a
general design pattern and that of its implementation.
However, this method does not verify the structural
correctness of the implementation. Therefore, there is a need
to develop an approach to automatically and fully validate
the implementation of patterns.

-id
Subject

-id
ProtectionObject*

*

-access_type
-predicate
-copy_flag
+checkRights()

Right

Authorization_rule *

*

Figure 1. The general Authorization pattern (adopted

from [19]).

-id
-name

Role
-id
-name

ProtectionObject

-access_type
-predicate
-copy_flag
+checkRights()

Right

*
*-id

-name

User
*

*

Authorization_rule *
*

MemberOf*

*

Figure 2. The basic RBAC pattern (adopted from [19]).

Figure 2. Structure of RBAC

Figures 2 shows structure of Role Based Access Control (RBAC) as examples of the

SDP. The RBAC pattern, which is a representative pattern for access control, describes how to

assign precise access rights to roles in an environment where access to computing resources must

be controlled to preserve confidentiality and the availability requirements.

C. Motivating example

As an example of a pattern application, Fig. 3 shows a portion (“make a payment”) of a

UML class diagram to realize a payment process on the Web.

 7

+ make_a_payment

<<control>>
Payment_Controller

<<boundary>>
Payment_UI

User

<<entity>>
user

<<entity>>
product

<<entity>>
payment_info

User

purchasing system

Administrator

make a
payment

confirm purchase
products

post a profit

register
products

part of Class Diagram

Figure 3. “Make a payment” portion of a class diagram for payment processing

A SDP alone is insufficient to support the development lifecycle because it lacks

systematic guidelines with respect to applications in the entire lifecycle [9]. Consequently,

formally describing what rules must be verified is difficult [10]. In addition, most SDPs do not

specifically mention the systematic guidelines until the relations with the Security Requirements

are defined [1]. Under the present conditions, even if a developer intends to apply a SDP like

RBAC (Fig. 2) to the model (Fig. 3), it is possible that a developer may inappropriately apply a

security measure to an identified threat. Additionally, the appropriateness of the applied pattern

to the model and the pattern’s ability to resolve vulnerabilities are inadequately verified.

Therefor, these present situations could cause inappropriate pattern application and unresolved

vulnerabilities.

pattern applications, a developer may apply the pattern
inappropriately (e.g., like NG design in Fig. 4). The NG design
implies that the access right depends on the user not on the role.
Moreover, the appropriate functional behavior of the access
control cannot be confirmed until the design model is tested.
Thus, the applied measures may not mitigate or resolve the
threats and vulnerabilities.

D. Test-Driven Development (TDD)
TDD is a software development technique that uses short

development iterations based on prewritten test cases to define
desired improvements or new functions. Here our testing
process employs TDD, which requires that developers generate
automated unit tests to define code requirements prior to
writing the actual code [11]. The test case represents
requirements that the program must satisfy [12].

Our method employs USE [13], which is a tool in the
UML-based simulation environment that runs tests to specify
and validate information systems based on subsets of UML and
OCL [14]. OCL is a semiformal language that can express
constraints for a variety of software artifacts as well as specify
constraints and other expressions in modeling languages. USE
was initially implemented in Java at Bremen University
(Germany) to evaluate OCL expressions via simulations. To
verify the OCL constraints, a developer creates an instance of a
class in USE and then inputs a value as a test case.

Our method initially evaluates the OCL expressions that a
design model should satisfy (Test First). TESEM generates
these OCL expressions and a test script to verify whether these
OCL expressions are satisfied. If the target model does not
satisfy these OCLs, SDPs are applied, and the tests are re-
executed to confirm that the vulnerabilities are resolved. The
verification method also uses OCL expressions as the
requirements.

III. VERIFICATION METHOD
This section explains our method. First, we show examples

of new extended security patterns. Next, we explain the
architecture and process of TESEM. Finally, as an example
verification process, we apply our method to a purchasing
system using these new extended security patterns.

A. Extended SRPs and SDPs

Fig. 5. Overview of Ex-SRPs and Ex-SDPs

The extended SRPs (Ex-SRPs) and extended SDPs (Ex-
SDPs) are prepared beforehand. These new SRPs and SDPs
are expansions of existing ones that can be used to verify
whether the applied patterns are appropriate and to identify the
presence of vulnerabilities in the target model. Figure 5 shows
the overall structures of Ex-SRPs and Ex-SDPs. In addition to
existing SRPs and SDPs, extended patterns contain Security
Requirements and Pattern Requirements, respectively.
These requirements are described using OCL expressions.

Security Requirements define the requirements that each
countermeasure must satisfy. If a model does not satisfy the
Security Requirements, then the measures do not remove the
vulnerabilities and the system may contain threats. In TDD,
these requirements represent test cases that must be satisfied.
Herein we assume that there are nine types of countermeasures:
“Input and Data Validation”, “Identification and
Authentication”, “Authorization”, “Configuration
Management”, ”Sensitive Data”, ”Session Management”,
“Cryptography”, “Exception Management”, and “Auditing and
Logging”. These countermeasures can be referenced in the
Security Frame Category [15], which is Microsoft’s systematic
categorization of threats and vulnerabilities. We assume that
these nine categories are typical countermeasures at the
requirement level because these categories represent the critical
areas where security mistakes are most common.

Pattern Requirements describe the requirements that the
applied pattern must satisfy. If a model does not satisfy the
Pattern Requirements, it implies that the pattern is applied
inappropriately.

B. Architecture of TESEM
Figure 6 overviews the system architecture of TESEM,

which contains five major functional components. TESEM,
which is Web service developed with PHP and JavaScript, is
about 12-k lines of code. To manage data, we use MySQL.
Below each major component is briefly described.

Fig. 6. System overview of TESEM

Modeling Component: TESEM has the function of a UML
diagramming application. It supports class and communication
diagrams. In the user interface, a user can add, edit, and delete
class elements as well as describe relations between elements.
Figures 7 and 8 show screenshots for a design target
application.

Fig. 7. Screenshot when creating a class diagram

Fig. 8. Screenshot when creating a communication diagram

Requirements Generator: In this generator, the main outputs
are Security Requirements and Security Design Requirements.
Security Design Requirements are combinations of each
Pattern Requirement. By selecting countermeasures for threats
and the Ex-SDP related to the countermeasures, this
component generates requirements that the target model must
satisfy. TESEM generates these requirements as test cases.

Test Script Generator: To verify the test cases generated by
the Requirements Generator, TESEM generates test script in a
form that USE can execute test. To create this script, TESEM
require concrete value as a test case.

Pattern Manager: This manages the countermeasure data and
Ex-SDPs. Specifically, the structures and behaviors of patterns,
the Security Requirements of each countermeasure, and the
Patten Requirements of each Ex-SDPs are managed.
Additionally, a user can submit new Ex-SDPs and share
patterns. Figure 9 shows a screenshot of the Pattern Manager’s
index page where two Ex-SDPs (“Role Based Access Control”
and “Password Design and Use”) are submitted as public
patterns.

Fig. 9. Screenshot of the Pattern Manger’s index page

Account Manager: TESEM manages user accounts and has
sign-up and sign-in functions. Moreover, each user can create
a new private or public project. Therefore, TESEM can create
any number of models per user.

C. Process of our method using TESEM
Our method involves the following seven steps:

1. Create class and communication diagrams as a target
system in the Modeling Component. TESEM uses a XML
parser, so it also can import XMI files, including model
information.

2. Identify threats and countermeasures in the system. Ex-
SRPs identify the types of assets, threats, and
countermeasures present in the developing software while
considering the functional requirements and determining
their associations at the requirement level.

3. Classify the type of countermeasures. These
countermeasures involving Security Requirements are
registered in advance. Then the Requirement Generator
creates the Security Requirements that the target model
must satisfy.

4. The Test Script Generator creates the test script to verify
whether the input model satisfies the Security
Requirements. Then the test script is used to evaluate
these requirements in USE.

5. After confirming that the target model does not satisfy the
Security Requirements, Ex-SDPs related to the
“countermeasures” of Ex-SRP are selected. Then the
Requirements Generator creates Security Design
Requirements that the target model must satisfy. Security
Design Requirements are combinations of the Pattern
Requirements.

6. The structure and behavior of Ex-SDPs are applied to the
input model by binding pattern elements based on
stereotypes in the Modeling Component.

7. The Test Script Generator creates a test script to verify
whether the model in which patterns are applied satisfies
the Security Design Requirements. This test script is used
to evaluate these requirements in USE.

Fig. 10. Testing process of our method (conceptual)

Figure 10 shows the conceptual testing process of our
method, which is based on TDD. Generally, TDD is used at
the code level. However, our testing process employs TDD at
the design level.

D. Example of the Verification Process using TESEM
To confirm that our method realizes a secure design, here

we applied it to a purchasing system on the Web as an
example verification process. Figure 1 shows the assumed
assets, threats, and countermeasures in the MASG model.

STEP 1) Design a target application with UML notation.

As a case study, we designed a model that does not
consider security (Fig. 11). Table 4 explains each element in
this model. This system does not have a function to verify the
condition to execute the “make a payment” process. In other
words, even if the user is not a regular user, the process can be
executed.

STEP 2) Identify threats and countermeasures in the system.

 “I&A”, “Input and Data Validation”, and “Authorization”
were selected countermeasures for “Spoofing”, “Elevation of
Privilege”, and “SQL Injection” in the “make a payment”
process, respectively (Fig. 1). For simplicity, each threat has
one countermeasure.

Fig. 11. Model that does not consider security

STEP 3) Select countermesures and generate Security
Requirements.

Countermeasures are selected from the nine types. Here we
selected the three identified in step 2. Then the Requirements
Generator of TESEM creates the Security Requirements that
the target model in Fig. 11 must satisfy. Table 1 and List 1
show the Security Requirements for the “make a payment”
process, which include “actor is a regular user”, “actor has
access permission”, and “valid data is inputted”. If these
requirements, which are a combination of “I&A”, “Input and
Data Validation”, and “Authorization”, are met, then the actor
can execute the “make a payment process”. These
requirements represent the test cases in the TDD process.

TABLE I. Security Requirements for the “make a payment” process
(conceptual)

1. context payment_controller
2. inv SecurityRequirements :
3. if self.payment_UI.User.regular_user = true and
4. self.payment_UI.User.right = true and
5. self.payment_UI.valid_input_data = true
6. then
7. self.make_a_payment = true
8. else
9. self.make_a_payment = false
10. endif

List. 1. Security Requirements for the “make a payment” process (OCL)

STEP 4) Execute a test to verify that the input model satisfies
the Security Requirements.

Next we executed a model test to determine whether the
input model that does not consider security satisfies the
Security Requirements in List 1 (i.e., we verified whether each
of test cases 1 – 8 behaves according to the expected action in
Table 1). The Test Script Generator of TESEM creates test
scripts to check if each test case is satisfied. These test scripts
can be executed in USE.

Figure 12 shows a case where the “regular user”, “has
access permission”, and “uses valid input data” are all “false”
(Table 1, test case 8). Because the input model lacks object
constraints, a false actor may carry out “make_a_payment =
true” (i.e., an actor can execute the “make a payment” process
without being a regular user or permission). Hence, the input
model not considering security does not satisfy the Security
Requirements of the “make a payment” process, and the OCL
evaluation in USE becomes "false" in Fig. 12.

Fig. 12. Conditions of the Security Test in USE

Table 2 shows the results of the eight test cases. Only case
1 satisfies the Security Requirements in Table 1, confirming
the necessity of countermeasures “I&A”, “Authorization”, and
“Input and Data Validation”.

TABLE II. Results of the Security Test

STEP 5) Select Ex-SDPs and generate Security Design
Requirements.

We selected Ex-SDP related to the countermeasures of Ex-
SRP, and added these to the structure to realize security
capabilities. Specifically, Password design and Use, RBAC,
and Prevent SQL Injection were employed for “I&A”,
“Authorization”, and “Input and Data Validation”,
respectively. Table 3 and List 2 show the combinations of each
Pattern Requirement necessary for the “make a payment”
process, which is referred to as “Security Design
Requirements”.

STEP 6) Apply Ex-SDPs and generate Security Design
Requirements.

We applied the above Ex-SDPs. During the pattern
application, pattern elements are bound to a stereotype in
TESEM. Figure 13 shows the structure after applying the
patterns to the model. Hence, this model considers security.
Compared to the model in Fig. 11, several conditions are
necessary to execute the “make a payment” process (Table 3).

TABLE III. Security Design Requirements of the “make a payment”
process (conceptual)

1. context payment_controller
2. inv check_id_and_pass:
3. if self.password_design_and_use.User_Data->exists(p |
4. p.id = self.password_design_and_use.Login_UI.id and
5. p.pass = self.password_design_and_use.Login_UI.pass)
6. then
7. self.Payment_UI.actor.regular_user = true
8. else
9. self.Payment_UI.actor.regular_user = false
10. endif
11.
12. context payment_controller
13. inv access_control:
14. if self.RBAC.Right->exists(p |
15. p.right = true and
16. p.role_id = p.Role.id and
17. p.role_id = p.Role.User_Data.role_id)
18. then
19. self.Payment_UI.actor.right = true
20. else
21. self.Payment_UI.actor.right = false
22. endif
23.
24. context payment_controller
25. inv sanitize_input_data_payment_UI:
26. if self.Payment_UI.Prevent_SQL_Injection.sanitize_input_data =

true
27. then
28. self.Payment_UI.valid_input_data = true
29. else
30. self.Payment_UI.valid_input_data = false
31. endif
32.
33. context payment_controller
34. inv sanitize_input_data_login_UI:
35. if

self.password_design_and_use.Login_UI.Prevent_SQL_Injection.sani
tize_input_data = true

36. then
37. self.password_design_and_use.Login_UI.valid_input_data = true
38. else
39. self.password_design_and_use.Login_UI.valid_input_data = false
40. endif

41. context payment_controller
42. inv security design requirement:
43. if self.Payment_UI.actor.regular_user = true and

 21

Figure 14. Conditions of the Security Test in USE

Figure 14 shows a case where “regular user”, “have access permission”, and “use valid

input data” are all false (test case 8, Table 3). Because the input model lacks object constraints,

an actor may carry out “make_a_payment = true”; that is, an actor can execute the “make a

payment” process without being a regular user or permission. Hence, the input model not

considering security does not satisfy the Security Requirements of the “make a payment”

process, and the evaluation of OCL on USE becomes "false" in Fig. 14.

Table 4 shows the results of the eight test cases where only case 1 satisfies the Security

Requirements in Table 3 and Fig. 13. In this way, countermeasures “I&A”, “Input and Data

Validation”, and “Access Control” are confirmed necessary.

Table 4. Results of the Security Test

44. self.Payment_UI.actor.right = true and
45. self.Payment_UI.valid_input_data = true and
46. self.password_design_and_use.Login_UI.valid_input_data = true
47. then
48. self.make_a_payment = true
49. else
50. self.make_a_payment = false
51. endif

List. 2 Security Design Requirements of the “make a payment” process (OCL)

Fig. 13. Model-applied patterns (structure)

STEP 7) Execute a test to verify that the input model satisfies
the Security Design Requirements.

To verify whether the patterns are applied appropriately to
the “make a payment” process, we must confirm that the
Security Design Requirements, which are combinations of
each Pattern Requirement, are satisfied. We executed tests to
confirm that the model in Fig. 13 satisfies the Security Design
Requirements. Specifically, we confirmed that test cases 1 – 8
behave as expected (Table 3) using the Test Script Generator
of TESEM to creates test scripts that can be executed in USE.

Fig. 14. Conditions of the Security Design Test in USE

Figure 14 shows the conditions of the Security Design Test
in USE for a case where access permission is not given for the
“Role” of the actor and the system does not sanitize the
inputted data in “Login UI” (Table 3, test case 4). Prior to
applying patterns, USE outputs “make_a_payment = true” (i.e.,

an actor without permission or inputting invalid data can
execute the “make a payment” procces). However, after the
patterns are applied, USE outputs “make a payment = false”,
and the actor cannot execute the “make_a_payment” process
because access permission is not specified in the “Role” and
the system assumes invalid data is used in “Login UI”. By
executing all the test cases, we confirmed that the output
model-applied pattern satisfies the Security Design
Requirements of the “make a payment” process.

To summarize, we applied Ex-SDPs for the
“make_a_payment” process, which requires “I&A”, “Input
Data and Validation”, and “Authorization”, and executed a
model test. Our verification process using TESEM confirms
the appropriate application of security design patterns and the
existence of vulnerabilities to threats identified at a
requirements stage.

IV. LIMITATIONS
Our method has a few limitations. Because test cases are

created based on threats and countermeasures identified in the
requirement stage, the presence of threats not identified at this
stage cannot be detected. In addition, the criterion for selecting
Ex-SDP may be impractical because the range is influenced by
the security policy, platform, and risk analysis.

V. EVALUATION AND DISCUSSION
A. Experimental Overview

To evaluate the Research Questions, we conducted
experiments involving ten students majoring in information
sciences at Waseda University in Japan. So that the students
were able to apply our method, we prepared a student
information management system called EMS (Enrollment
Management system) [16]. EMS is an actual web application
used to evaluate security and privacy methodologies that was
designed and analyzed in collaboration with IT companies and
academic research institutes. This system involves typical
software vulnerabilities such as SQL injection or XSS. The
number of use case and class of this system are 24 and 31
respectively.

Students were given the use cases, model (class and
communication diagram), and threats of this system. In the
experiments, we considered the “delete function” of the
“Student Controller” as a use case involving two threats
(“Elevation of privilege” and “SQL Injection”). The
experiment included the following:

• Exercise 1: Students realized a secure design to mitigate two
threats (“Elevation of privilege” and “SQL Injection”),
without referring to anything in particular.

• Exercise 2: Students realized a secure design to mitigate two
threats while referring to a security design pattern. In this
exercise, we instructed that two security design patterns
(“RBAC” and “Prevent SQL Injection”) be used.

• Exercise 3: Students realized a secure design to mitigate two
threats using our method. Specifically, they set the Security
Requirements and Security Design Requirements for the
design model created in Exercise 2. Then they remodeled

 26

~ 8 behave expected action as table. 6. To execute tests, first, we input concrete test cases to the

model created in Step 4. Then we get the test script, which was translated to execute test in USE.

Finally we evaluate OCL statement using this test script in USE. Figure 18 shows the conditions

of the Security Design Test in USE.

TABLE V. Security Design Requirements for the “make a payment”
process

Figure 19. Security Design Requirements of “make a payment” (OCL)

To validate whether the model shown in Fig. 18 satisfies
the Security Design Requirements in Fig. 19, we executed
model tests in USE using the Security Design Test Template.

Figure 20 shows the conditions of the Security Design Test in
USE.

Figure 20. Conditions of the Security Design Test in USE

Figure 20 shows a case where the inputted ID and Password
into <<Login_UI>> exists in <<User_Data>>, but access
permission is not given for the “Role” of the actor and the
system does not sanitize the “UI” input data (case 4, Table V).
Prior to applying patterns, an actor can execute the “make a
payment” process, even if the actor does not have permission
or inputs invalid data because USE outputs “make_a_payment
= true”. After patterns are applied, USE outputs "make a
payment = false" and the actor cannot execute the
“make_a_payment” process because access permission is not
specified in “Role” and the system assumes invalid data is used
in “UI”. By executing all the test cases, we confirm that the
output model after a pattern application satisfies the Security
Design Requirements for the “make a payment” process.

 Step 6: Finally we re-executed the Security Test to validate
that the output model with a pattern application satisfies both
the Security Design Requirement and the Security
Requirement. If it satisfies the Security Requirement, then the
countermeasures appropriately resolve vulnerabilities in the
“make a payment” process.

To summarize, we applied Ex-SDPs for the
“make_a_payment” process that required “I&A”, “Input Data
and Validation”, and “Access Control”, and executed a model
test in USE. The Security Test confirmed that the initial input
model did not satisfy the Security Requirement of the “make a
payment” process. Then the Security Design Test evaluated
whether the output model applied patterns to satisfy the
Security Design Requirement of the “make a payment” process.
Finally, the Security Test was re-executed to verify that the
revised model applied patterns to satisfy the Security
Requirement. In this manner, the appropriate application of
security design patterns and the existence of vulnerabilities to
threats identified at a requirements stage before and after
pattern application could be validated.

D. Limitations
Our method has a few limitations. Because tests are

executed based on threats and countermeasures identified in the
requirement stage, the presence of threats not identified in the

1 2 3 4 5 6 7 8

Conditions

the same ID and Password that are
inputted into “Login_UI” exist in
"User_Data”,

Yes Yes Yes Yes No No No No

Conditions access permission is given in “Role” to
which an actor belongs Yes Yes No No Yes Yes No No

Conditions

sanitize input data in UI Yes No Yes No Yes No Yes No

Actions

consider regular user � � � �

Actions

consider non-regular user � � � �

Actions

considers that an actor have access
permission � � � �

Actions
consider that an actor does not have
access permission � � � �

Actions

consider that valid input data is used � � � �
Actions

consider that invalid input data is used � � � �

Actions

execute “make a payment” process �

Actions

not execute “make a payment” process � � � � � � �

context payment_controller
 inv check_id_and_pass:
 if self.password_design_and_use.User_Data->exists(p |
 p.id = self.password_design_and_use.Login_UI.id and
 p.pass = self.password_design_and_use.Login_UI.pass)
 then
! self.Payment_UI.actor.regular_user = true
 else
! self.Payment_UI.actor.regular_user = false
 endif

context payment_controller
 inv access_control:
 if self.RBAC.Right->exists(p |
 p.right = true and
 p.role_id = p.Role.id and
 p.role_id = p.Role.User_Data.role_id)
 then
! self.Payment_UI.actor.right = true
 else
! self.Payment_UI.actor.right = false
 endif

context payment_controller
 inv sanitize_input_data_payment_UI:
 if self.Payment_UI.Prevent_SQL_Injection.sanitize_input_data = true
 then
 self.Payment_UI.valid_input_data = true
 else
! self.Payment_UI.valid_input_data = false
 endif

context payment_controller
 inv sanitize_input_data_login_UI:
 if self.password_design_and_use.Login_UI.Prevent_SQL_Injection.sanitize_input_data = true
 then
 self.password_design_and_use.Login_UI.valid_input_data = true
 else
! self.password_design_and_use.Login_UI.valid_input_data = false
 endif

context payment_controller
 inv security design requirement:
 if self.Payment_UI.actor.regular_user = true and
 self.Payment_UI.actor.right = true and
 self.Payment_UI.valid_input_data = true and
 self.password_design_and_use.Login_UI.valid_input_data = true
 then
 self.make_a_payment = true
 else
! self.make_a_payment = false
 endif

Figure 18. Conditions of the Security Design Test in USE

Figure 18 shows a case that access permission is not given for the “Role” of the actor

belongs and the system does not sanitize the input data in “Login UI”. This is a test case 4 in

Table. 6. Prior to applying patterns, USE outputs “make_a_payment = true”; that is, an actor can

execute the “make a payment” process, even if the actor does not have permission or inputs

invalid data. After patterns are applied, USE outputs "make a payment = false" and the actor

cannot execute the “make_a_payment” process because access permission is not specified in

“Role” and the system assumes invalid data is used in “Login UI”. Consequently, evaluate of

OCL statements are true in Fig. 18. By executing all the test cases, we confirm that the output

model after a pattern application satisfies the Security Design Requirements of the “make a

payment” process.

while verifying these requirements were satisfied. In this
exercise, we instructed that TESEM be employed initially.

B. Experimental Results and Discussion

1) Exercise 1
• In this exercise, seven of the ten students were unable to

show a concrete design policy at all. Although the other
three designed to mitigate threats, their design models differ,
demonstrating that developers who are not security design
specialists have difficulty realizing secure designs without
referring to anything. Moreover, the design policy depends
on the individual skills strongly, even if developers are
familiar with security.

2) Exercise 2
• By referring a security design pattern, all students adopted

the same design policy, and the attribute and method names
are standardized. Additionally, compared to exercise 1, the
average time decreased by 10 minutes. These results mean
that referencing security patterns improves the design
quality and affects the development time. However, eight of
the students applied patterns inappropriately. Examples of
incorrect pattern application include “lack of associations”,
“insufficient class entities”, and “wrong coordination
between patterns”. This result answers RQ1 affirmatively;
developers do inappropriately apply patterns.

3) Exercise 3
• In this exercise, the TESEM outputted “false” to eight

incorrect models, which were created in Exercise 2 because
the Security Requirements and Security Design
Requirements are not satisfied. Exercise 3 confirms that our
method can detect an incorrect application of each security
design pattern by verifying each Pattern Requirements.
Moreover, our method can detect the presence of
vulnerabilities by verifying Security Requirements. Thus,
this exercise answers RQ2 and RQ3 affirmatively; our
method detects incorrect applications of specific security
design patterns and the presence of vulnerabilities.

• In response to “false”, all students modified their models
and two of the eight students realized “true” by themselves.
Although measures that allow developers to realize correct
model are necessary, detecting an incorrect application and
the presence of vulnerabilities helps developers to improve
their design models. Hence, RQ4 is answered.

VI. THREATS TO VALIDITY
We did not verify whether our method is applicable to any

type of system. Therefore, the case study results cannot be
generalized. Additionally, the numbers of security patterns and
testers were insufficient. Hence, it is possible that our method
is not applicable to all security patterns. Although we used
representative patterns and a typical model for software
development to demonstrate the usefulness of our method, we
need to examine more general patterns and employ large-scale
examples.

VII. CONCLUSION AND FUTURE WORK
Non-expert software developers may inappropriately apply

patterns, and even if the patterns are properly applied, threats

and vulnerabilities may not be mitigated. Herein we propose a
verification method for a security design pattern using a model
test in the UML model simulation environment. Specifically,
assets, threats, and countermeasures are identified in the target
system during an early stage of development. We verified both
the appropriateness of the applied patterns and the existence of
vulnerabilities in the first stage of the design model.

This method offers three significant contributions. First,
Ex-SRP and Ex-SDP, which are new extended security
patterns using OCL expressions, include requirement- and
design-level patterns. Second, a new model-testing process
based on TDD verifies correct pattern applications and the
existence of vulnerabilities. Finally, a tool called TESESM,
which supports pattern applications, automatically generates
script to test the model. In the future, we intend to conduct
experiments using more general and large-scale examples as
well as consider applications based on the dependencies
among patterns, which should realize more practical uses.

REFERENCES
[1] Maruyama, k., Washizaki, H., & Yoshioka, N. (2008). A Survey on

Security Patterns Progress in Informatics No.5 pp.35-47.
[2] Bschmann, F., Fernandez-Buglioni, E., Schumacher, M., Sommerlad, P.,

& Hybertson, D. (2006). SECURITY PATTERNS : Integrating Security
and Systems Engineering (Wiley Software Patterns Series).

[3] Kobashi,T., Yoshioka, N., Kaiya, H., Washizaki, H., Okubo, T., &
Fukazawa, Y. (2014). Validating Security Design Pattern Applications
by Testing Design Models. International Journal of Secure Software
Engineering. IJSSE volume 5 issue 4 pp1-30.

[4] Okubo, T., Kaiya, H., & Yoshioka, N. (2012). N. Effective Security
Impact Analysis with Patterns for SoftwareEnhancement. IJSSE 3(1):
37-61 2012.

[5] Okubo, T., Taguch, K., & Yoshioka, N. (2009). Misuse Cases + Assets +
Security Goals. International Conference on Computational Science and
Engineering.

[6] Andreas L., & Sindre, G. (2000). Eliciting security requirements by
misuse cases. IEEE Computer Society.

[7] Dong, J., Peng, T., & Zhao, Y. (2008). Verifying Behavioral Correctness
of Design Pattern Implementation. SEKE, page 454-459.

[8] Abramov, J., Shoval, P., & Sturm, A. (2009). Validating and
Implementing Security Patterns for Database Applications. SPAQu.

[9] Dong, J., Peng, T., & Zhao, Y. (2009). Automated verification of
security pattern compositions. Information and Software Technology,
vol 52, pages 274–295.

[10] Torsel, A.-M.A. (2013). Testing Tool for Web Applications Using a
Domain-Specific Modelling Language and the NuSMV Model Checker.
Software Testing, Verification and Validation (ICST), pages 383–390.

[11] Choi, B., Kim, H., & Yoon, S. (2009). Performance testing based on
test-driven development for mobile applications. ICUIMC.

[12] Astels, D., Beck, K., Boehm, B., Fraser, S., McGregor, J., Newkirk, J.,
& Poole. C. (2003). Discipline and practices of TDD : (test driven
development). OOPSLA.

[13] Büttnera, F., Gogollaa, M., & Richtersb,M. (2007). USE: a UML-based
specification environment for validating UML and OCL. Science of
Computer Programming (vol 69).

[14] Kleppe. A & Warmer, J. (1999). The Object Constraint Language:
Precise Modeling with UML (Addison-Wesley Object Technology
Series).

[15] Mackman, A., & Maher, P. (2007). Web Application Security Frame.
Microsoft Patterns & Practices. http://msdn.microsoft.com/en-
us/library/ms978518.

[16] Kaiya, H., Kobashi.T., Okubo, T. Washizaki, H., & Yochioka, N. (2013).
SSR-Project.https://github.com/SSR-Project

APPENDIX
Here we describe our plan for a live demonstration, which

has two objectives:

• To explain how to detect incorrect pattern applications using
TESEM.

• To encourage developers who design models using UML to
employ TESEM.

This demonstration of TESEM should help developers
realize secure designs by applying security patterns. Below is
an explanation of how we will achieve each objective.

A. Example of the Verification Process using TESEM
To demonstrate that TESEM helps detect incorrect pattern

applications and helps realize secure designs, we intend to
show an example of a verification process using TESEM
where the target is EMS (Enrollment Management system)
with typical software vulnerabilities.

First, we will explain how to model the target system and
how to add or edit elements of the model. Figure 15 shows a
screenshot when editing “User” element.

Fig. 15. Screenshot when editing “User” element.

Then we will show how to apply security patterns.
Additionally, we will demonstrate how to set up Security
Design Requirements for the target model. Figure 16 shows a
screenshot after selecting patterns and setting up Security
Design Requirements (“RBAC” and “Password Design and
Use”).

Fig. 16. Screenshot when editing User element.

Finally, we will explain how to generate a test script to
verify whether the model in which patterns are applied
satisfies the Security Design Requirements. In this
demonstration, we will confirm whether specific test cases are
satisfied. Figure 17 shows a screenshot when generating a
specific test script. Moreover, we will show the results of a test
using this test script.

Fig. 17. Screenshot when generating test script

B. Registration and creating new project
TESEM manages user accounts and has sign-up and sign-

in functions. Moreover, each user can create a new private or
public project. We will show how the sign-up and create a new
project.

First we will access TESEM’s landing page and create new
account (Fig. 18). TESEM can select password-login or
Facebook-login.

Fig. 18. Landing page of TESEM

Then we will create new project. The access level such as
“private” or “public” allows developers to manage confidential
information. Figure 19 shows screenshot when a new project
is created.

Fig. 19. Screenshot when creating a new project.

