
Two-level Checklists and Perspectives: Software Reading
Techniques for Pattern Writer’s Workshop

TIAN XIA, Waseda University
HIRONORI WASHIZAKI, Waseda University
YOSHIAKI FUKAZAWA, Waseda University
JOSEPH YODER, The Refactory, Inc.
REBECCA WIRFS-BROCK, Wirfs-Brock Associates, Inc.

A Pattern Writer’s Workshop (WW) is a peer-review method to improve pattern or pattern language papers. However, several
problems may arise, leading to “ad hoc” review meetings where patterns are not systematically reviewed and authors do not receive
useful feedback. Previously, we considered Checklist-based Reading (CBR) and Perspective-based Reading (PBR), which are
techniques to improve ad hoc reviews, but some deficiencies were noted. In this paper, we propose an approach to improve WWs by
providing a two-level checklist and refining perspectives for reviewing patterns. An experiment shows the strengths and weaknesses
of this new approach.

Categories and Subject Descriptors: D.2.11 [Software Architectures]: Patterns

General Terms: Management, Documentation, Performance, Design, Experimentation, Human Factors

Additional Key Words and Phrases: Software pattern, Pattern language, Writer’s workshop, Review, Checklist-based reading,
Perspective-based reading

ACM Reference Format:

Pineo, D. and Ware, C. 2010. Neural Modeling of Flow Rendering Effectiveness. ACM Trans. Appl. Percept. 2, 3, Article 1 (May 2010),
10 pages.

1. INTRODUCTION

Pattern Writer’s Workshops (WWs) are designed to review and improve pattern or pattern language papers
via feedback from peers. Although WWs are well accepted in the pattern community and xPLoP
conferences, several problems may arise due to how they are conducted, leading to an “ad hoc” review
meeting where the patterns are not adequately reviewed and the authors do not receive useful feedback.
Software reading techniques such as Checklist-Based Reading (CBR) and Perspective-Based Reading
(PBR) have been developed as improvements over ad hoc reviews of software and software
documentation. Because software patterns and pattern languages are software artifacts, applying existing
software reading techniques to review software pattern or pattern language papers may improve the
outcome of WWs.

Previously we proposed an approach to introduce CBR and PBR to WWs. Our experiment, which
examined their contributions, identified several issues. First, our CBR checklist was unsuited for all types of
pattern papers; some items were not applicable and other important items were missing. Second, some
participants expressed difficulty understanding certain items because our list was a mixture of abstract
topics and concrete items. Third, we were unable to confirm an obvious contribution of PBR during the
experiment. Fourth, a more precise process was highly desired by all participants.

Herein we propose an approach to provide a two-level CBR checklist and to revise the perspectives in
PBR. Additionally, we recommend a process showing how to utilize these reading techniques in WWs that
target patterns and pattern languages. To validate the effectiveness of our approach, an experiment was
conducted to address the following research questions:

RQ1. Does the two-level checklist increase the number of general comments compared to a single
checklist or a traditional WW?

RQ2. Does the PBR provide more specific comments than a traditional WW?

RQ3. Is our process more efficient than a traditional WW or a single checklist?

The rest of the paper is structured as follows: Section 2 introduces our previous research and the identified
problems in detail. Section 3 describes the proposed CBR and PBR and shows the process to utilize them.

Two-level Checklists and Perspectives: Software Reading Techniques for Pattern Writer’s Workshop: Page - 2

Section 4 presents an experiment to validate our approach and answer the research questions. Finally,
Section 5 draws conclusions and provides research directions.

2. BACKGROUND AND PROBLEM STATEMENT

2.1 Previous research

Although WWs are accepted widely, there can be several problems with the outcome, such as too few
comments, superficial comments, or missing important concerns (Fig. 1). In our previous research, which
examined the causes of these problems, we proposed an approach to introduce CBR and PBR into WWs
targeting patterns and pattern languages. The main ideas and contributions can be summarized as follows:

 CBR: To review software, CBR is a reading technique where reviewers use a list of statements or

questions when checking a document. To apply CBR to WWs, we surveyed the existing literature on
software pattern writing, shepherding, and the criteria for well-written software patterns. Then we
composed a checklist of questions regarding the properties that a pattern should possess. To cover all
aspects of a pattern, the checklist contained 27 questions in 10 categories. For example, questions
included “Does the pattern contain a pattern name, context, problem, system of forces, and solution?”
in the “Structure” category and “Does the problem and solution match and fit together?” in the
“Problem and Solution” category.

 PBR: PBR asks reviewers to provide comments based on an assigned perspective. Previously, we
applied PBR to WWs by combining PBR and CBR. That is, we made checklists from several
perspectives. For example, the “End User” checklist asked “Does the pattern help satisfy the needs
and requirements in the resulting software” and “Does the pattern contribute to the ease of use of the
resulting software?” These questions were intended to deepen the reviewer’s consideration of the
pattern content based on a specific perspective.

 Moreover, to validate the effectiveness of our approach, the previous paper included an experiment.
The results confirm that CBR produces more comments than a traditional WW with regard to the
description and pattern contents, and that PBR might contribute to more concrete content.

2.2 Problems and possible solutions

Although the previous research showed that our approach had some positive contributions, several
problems were also revealed, including:

 P1. Difficulty understanding the checklist for CBR: We strived to create an easy-to-use general

checklist based on several categories, but many comments indicated the checklist was difficult to use.
Cause: Some items were described too abstractly while other items were simply yes or no. This mixed
format made the list difficult to understand. Additionally, some unnecessary items also caused a
problem (related to P3).

 P2. No obvious contribution of PBR: We were unable to validate the contribution of PBR compared to

a traditional WW.
Cause: There were several possible reasons. First, the number of perspectives was limited, restricting
the number of comments. Second, some perspectives were hard to use for certain patterns (related to
P3). Third, the primary benefit of PBR might not be to find more comments, but to find more specific
comments.

 P3. Unsuitable checklists in both CBR and PBR: Some items in the CBR checklist and some

perspectives in PBR were unsuited for the target pattern, leading to other issues.
Cause: This problem was due inflexibility. Because numerous patterns exist, the fixed checklist was
not universal.

 P4. Ambiguous Processes in both CBR and PBR: The moderator and participants were confused by
receiving the checklists without instructions. They were unsure on how to apply them to a WW.

Two-level Checklists and Perspectives: Software Reading Techniques for Pattern Writer’s Workshop: Page - 3

Cause: A precise explanation of the whole process was lacking.

In this paper, the following solutions are proposed.
 S1. Two-level Checklist-based Reading
 S2. Revised perspectives
 S3. Process to utilize CBR and PBR in WWs

Figure 1 shows the relationship between the problems and the solutions. Below they are described in more
detail.

Figure 1 Relationships between the problems, causes, and proposed solutions

3. READING TECHNIQUES FOR WW

Here we propose an approach to introduce two representative reading techniques, CBR and PBR, into
traditional WWs as well as process on how to utilize them.

3.1 Two-level Checklist-based Reading

Two types of checklists can be used in WWs: general and specific checklists. A general checklist is more
abstract, focusing on the structure and description of the pattern, while a concrete checklist emphasizes
details of the pattern content. In this paper, we provide a two-level checklist that considers both types.

3.1.1 Method

A “two-level” checklist includes both abstract and concrete levels for a comprehensive overall review. One
level probes abstract ideas and considerations, while the other shows concrete items and issues to be
checked. To create such a checklist, we surveyed the existing literature. Items are classified into the
following ten categories.

 Being generative: According to the original concept of patterns and pattern languages, patterns are

generative. Although generativity is a desired characteristic of any software pattern or software pattern
language, we have found that reviewers have difficulty answering such a conceptual question easily.
Hence, we generated several items related to how patterns can be generative.

Two-level Checklists and Perspectives: Software Reading Techniques for Pattern Writer’s Workshop: Page - 4

 Domain and scope: A pattern, as a part of a larger pattern language, should focus on a specific scope
within a domain.

 Structure: A pattern should contain several mandatory elements such as name, problem, and solution.
A pattern should also have optional elements, including code examples, resulting context, and related
patterns.

 Problem and solution: A problem and its corresponding solution are the heart of a pattern. They
should work well individually and together.

 Forces: Forces should be addressed comprehensively and visibly support the problem.
 Name and reference: A pattern should have the appropriate name and refer to other patterns explicitly.
 Known uses and validation: A pattern should be validated by use.
 Acknowledgement: Authors of a pattern should recognize people who contribute to their pattern.
 Terminology and notation: A pattern should be comprehensive and use common terminology and

figure notations.
 Pattern language: A pattern language, as a system of related patterns, should have a precise

summary and ideally a common running example for all patterns within it.

3.1.2 Two-level checklist

Table 1 shows the abstract level of our general checklist. Because the items are described in an abstract
manner, this table is suitable for reviewing most types of patterns or pattern languages. This abstract
checklist may be a solution to our “unsuitable checklist” problem (P3).

Table 1 Draft of the abstract level for a general checklist

This checklist may not solve the problem, “difficulty understanding the checklist” (P1). Abstract items may
make the checklist more difficult to understand and confuse participants who are unfamiliar with WWs
targeting patterns.
 Table 2 shows the concrete level for the general checklist. Each category contains more items than the
abstract level. To a certain extent, the concrete checklist could be considered a detailed example of the
abstract checklist. Most of the items in this checklist are readable and easy to understand. Even WW
participants with little experience reviewing patterns should be able to provide valuable comments following
this list. Thus, the list in Table 2 is a solution to “difficulty understanding the checklist” (P1).

ID Category Item to be checked

A1 Being Generative Is the pattern both a thing and a process?

A2 Being Generative Does the pattern have an implied artifact?

A3 Being Generative Does the pattern realize many levels of abstraction?

A4 Domain and scope Is the pattern grounded in a specific domain and as part of a language?

A5 Domain and scope Is the pattern target clear?

A6 Structure Does the pattern contain all necessary information?

A7 Structure Would adding additional information be meaningful or helpful?

A8 Structure Does the pattern help the reader catch the essence quickly?

A9 Problem and solution Do the problem and solution work well separately?

A10 Problem and solution Do the problem and solution match and work well together?

A11 Forces Does the pattern address all forces comprehensively?

A12 Forces Do the forces clearly lead to the choice of solution to the problem?

A13 Name and reference Is the pattern name meaningful and easily remembered?

A14 Name and reference Does the pattern refer to other external patterns in understandable ways?

A15 Known uses and validation Is the pattern validated sufficiently?

A16 Acknowledgement Do the authors acknowledge those who supported their pattern writing?

A17 Terminology and notation Does the pattern use terminology and notations in a comprehensive way?

A18 Pattern language Is each pattern in the language defined?

A19 Pattern language Are the relationships between patterns in the pattern language clear?

A20 Pattern language Does the pattern language help the reader put this language into practice?

Two-level Checklists and Perspectives: Software Reading Techniques for Pattern Writer’s Workshop: Page - 5

Table 2 Draft of the concrete level for a general checklist

More concrete questions lead to an inflexible review. This concrete checklist might not solve the
“unsuitable checklist” (P3), and may even make the problem worse. Additionally, important concerns may
be missed if the concrete checklist does not cover important aspects of a pattern.
 To summarize, both checklists may solve one problem while making another problem worse. Because
this is highly undesirable, a combination of both checklists is considered.

3.1.3 Usage of the checklist in WWs

We suggest using the two-level checklist as follows. While preparing for a WW, the authors of the pattern
prepare a tailored checklist based on the checklists in Tables 1 and 2. If a concrete checklist for each
category is appropriate, then the concrete questions should be used. However, if the concrete checklist
only partially fits their pattern or pattern language, unsuitable items should be modified. However, if the
concrete items are inapplicable, the abstract checklist should be considered. By combining questions for
each category from both checklists, the authors can generate a customized checklist to review their pattern
or pattern language. Table 3 shows an example of a customized checklist.

ID Category Item to be checked

C1 Being Generative Does the pattern introduce a good system as well as the process to build it?

C2 Being Generative Does the pattern show different levels (e.g., story, paragraph, sentence, and word)?

C3 Being Generative Are the design levels linked?

C4 Being Generative Does the pattern leave an inevitable mark on the structure of its application result?

C5 Domain and scope Does the pattern clarify the domain it serves?

C6 Domain and scope Is the pattern connected with other patterns?

C7 Domain and scope Is the pattern part of a pattern language?

C8 Domain and scope Is a target audience of the pattern clear?

C9 Domain and scope Does the pattern have the proper scope for its application target?

C10 Structure Does the pattern contain a pattern name, context, problem, system of forces, and solution?

C11 Structure Are problem, context, and solution identified clearly if a reader only skims the paper?

C12 Structure Is the pattern readable upon skimming?

C13
Structure

Does the pattern contain additional information such as the resulting context, running examples, and
related patterns?

C14 Structure Do the additional sections provide sufficient information about the need for the pattern?

C15 Problem and solution Does the problem capture system hot spots?

C16 Problem and solution Does the solution focus on an area rather than a one-time problem?

C17 Problem and solution Do the problem and solution match?

C18 Problem and solution Do the problem and solution provide the core idea of the pattern?

C19 Forces Does the pattern address both functional and nonfunctional forces?

C20 Forces Do the forces explain what makes the problem difficult?

C21 Forces Are the forces highly visible regardless of the pattern form used?

C22 Name and reference Is the pattern named by its solution or a meaningful metaphor?

C23 Name and reference Is there a brief explanation of a related pattern introduced in the paper?

C24 Name and reference Is the relationship between the pattern and related pattern(s) presented clearly?

C25 Known uses and validation Is the pattern validated by use, preferably at least three times?

C26 Known uses and validation Are the known uses or stories convincing?

C27 Acknowledgement Do the authors acknowledge others for their shepherd and workshop applicants?

C28 Terminology and notation Does the pattern use terminology and notations that the audience will understand?

C29 Terminology and notation Is a glossary of unfamiliar terms provided, if necessary?

C30 Pattern language Is the summary of each pattern provided in terms of its problem and solution?

C31 Pattern language Is the pattern language summarized in the introduction?

C32 Pattern language Does the pattern language show a process to use the provided patterns?

C33 Pattern language Is the common problem highlighted if several patterns solve same problem?

C34 Pattern language Is the same running example used through the entire language?

Two-level Checklists and Perspectives: Software Reading Techniques for Pattern Writer’s Workshop: Page - 6

Table 3. Example of a customized checklist for CBR

One benefit of this approach is that a customizable checklist mitigates P3 while simultaneously providing a
solution to P1 as the tailored checklist is mostly based on concrete items.

3.2 Perspective-based Reading

3.2.1 Method

 Existing perspectives for reading software materials are also applicable to WWs for software patterns and
pattern languages. Such perspectives include quality characteristics, use cases, usage scenarios, and
stakeholders. Possible uses of these perspectives were discussed in our previous research. Although our
previous work incorporated perspectives of the stakeholders of the resulting software, this paper also
provides perspectives of stakeholders of the pattern and pattern language. Tables 4 and 5 show checklists
for possible stakeholders.

Stakeholder ID Considerations

End user

E1 Does the pattern satisfy needs and requirements in the resulting software?

E2 Does the pattern help reveal possible users and behaviors of the resulting software?

E3 Does the pattern help improve the ease of use of the resulting software?

Designer

D1 Does the pattern provide sufficient and consistent information for design?

D2 Does the pattern contribute to an adequate design solution for the resulting software?

D3 Does the pattern allow for future extensions and maintenance of the resulting software?

Programmer

P1 Does the pattern provide sufficient information to show it solves the problem?

P2 Is the pattern adaptable to most software implementations regardless of the type of software?

P3 Does the pattern provide a solution without unnecessarily increasing software complexity?

ID Category Item to be checked

C1 Being Generative Does the pattern introduce a good system as well as the process to build it?

C2 Being Generative Does the pattern show different levels (e.g., story, paragraph, sentence, and word)?

C3 Being Generative Are the design levels linked?

C4 Being Generative Does the pattern leave an inevitable mark on the structure of its application result?

C5 Domain and scope Does the pattern clarify the domain it serves?

C6 Domain and scope Is the pattern connected with other patterns?

C7 Domain and scope Is the pattern part of a pattern language?

C8 Domain and scope Is a target audience of the pattern clear?

C9 Domain and scope Does the pattern have the proper scope for its application target?

C10 Structure Does the pattern contain a pattern name, context, problem, system of forces, and solution?

C11 Structure Are problem, context, and solution identified clearly if a reader only skims the paper?

C12 Structure Is the pattern readable upon skimming?

A7 Structure Would adding additional information be meaningful or helpful?

A8 Structure Does the pattern help the reader catch the essence of it quickly?

C15 Problem and solution Does the problem capture system hot spots?

C16 Problem and solution Does the solution focus on an area rather than a one-time problem?

C17 Problem and solution Do the problem and solution match to each other?

C18 Problem and solution Do the problem and solution provide the core idea of the pattern?

C19 Forces Does the pattern address both functional and nonfunctional forces?

C20 Forces Do the forces explain what makes the problem difficult?

C21 Forces Are the forces highly visible regardless of the pattern form used?

C22 Name and reference Is the pattern named by its solution or a meaningful metaphor?

C23 Name and reference Is there a brief explanation of a related pattern introduced in the paper?

C24 Name and reference Is the relationship between the pattern and related pattern(s) presented clearly?

C25 Known uses and validation Is the pattern validated by use, preferably at least three times?

C26 Known uses and validation Are the known uses or stories convincing?

A16 Acknowledgement Do the authors acknowledge those who supported their pattern writing?

A17 Terminology and notation Does the pattern use terminology and notations in a comprehensive way?

Two-level Checklists and Perspectives: Software Reading Techniques for Pattern Writer’s Workshop: Page - 7

Tester

T1 Is the mechanism of the pattern solution reliable?

T2 Can the pattern solution be easily tested?

T3 Does the pattern contribute to testing ease of the resulting software?

T4 Does the pattern provide sufficient information to test the resulting software?

T5 Does the pattern contribute to robustness of the resulting software for any input?

Quality
engineer

Q1 Does the pattern show how it contributes to the quality of the solution software?

Q2 Does the pattern avoid introducing additional risks or decrease the quality of the solution software?

Table 4.Draft checklist for stakeholders of the resulting software

Stakeholder ID Considerations

Author of
related pattern

AR1 Is the explanation of the related pattern correct and clear?

AR2 Does the pattern refer to the core idea of related patterns?

Author of
another pattern
paper

AP1 Is the core idea of the pattern clear enough that it could be referred to easily?

AP2 Does the pattern show how it could contribute to related patterns?

Table 5. Draft checklist for other pattern stakeholders

Because a pattern should be able to integrate into its surrounding environment, the perspective of authors
of other patterns is important. Thus, Table 5 shows a checklist for two additional types of stakeholders:
 Author of a related pattern: A related pattern is defined as any pattern related to the target pattern.

The author of a related pattern may care about whether their pattern is referred to correctly and
meaningfully.

 Author of another pattern paper: Because authors of other patterns may refer to the target pattern,
they should be able to easily identify the core idea of the target pattern in order to determine whether
the target pattern is useful as a reference or part of their solution.

Unlike CBR, PBR focuses more on pattern content than on form or description. Because it is difficult to
provide concrete items to check pattern content, we instead provide several considerations for each
stakeholder. This checklist reminds participants of their character and points out possible considerations.

By increasing the number of stakeholders, the problem, “No obvious contribution” (P2) might be
mitigated, as more specific views are represented. However, each pattern or pattern language has its own
target audience. Stakeholders for the resulting software are highly dependent on the pattern itself. Thus,
reviewing the perspectives of all potential stakeholders might not be meaningful. Moreover, due to time
limitations, unsuitable perspectives may waste resources, reducing comments from more relevant
perspectives.

Therefore, we strongly recommend that the authors of a pattern or pattern language select only the
essential perspectives from the Table 4 (mitigation for P3), and depending on the pattern, the authors may
add specific perspectives.

3.3 Process to utilize reading techniques in WWs

We propose the following implementation process to improve WWs:

0) Prior to the WW, the authors of the pattern prepare a customized checklist and perspectives based on

3.1.3 and 3.2. The moderator confirms the checklists. Then the participants carefully read the paper
and prepare comments.

1) The moderator assigns both the customized checklist and specific perspectives to the participants.
2) The author of the pattern under review reads one or two important paragraphs in the pattern paper.
3) One of the participants summarizes the paper.
4) Participants identify the strengths of the pattern by CBR. The moderator leads a discussion on general

items according to the customized checklist.
5) Participants identify the strengths of the pattern by PBR. The participants comments based on their

perspective.

Two-level Checklists and Perspectives: Software Reading Techniques for Pattern Writer’s Workshop: Page - 8

6) The same process as (4)–(5) is applied to identity the pattern’s weaknesses and to suggest possible
improvements.

7) A free form discussion ensues to capture comments that not covered in the previous discussions.
8) The author thanks all the participants and asks questions to clarify the participants’ statements.
9) The participants clap to thank the author for writing the paper.
10) The participants submit the draft paper with comments to the author, if necessary.

Because this process follows a traditional WW, the authors should observe without commenting during
the main discussion. The benefit of this process is that both the pattern structure and its contents are more
systematically evaluated. CBR allows participants to have a systematic discussion on the structure and
description, while subsequently employing PBR after most superficial issues have been discussed allows
participants to focus on the pattern content.

4. EXPERIMENT AND DISCUSSION

To validate the effectiveness and efficiency of our approach, and answer RQ1-RQ3, we conducted a local
experiment at Waseda University.

4.1 Experimental Setup

To compare to a traditional WW, we choose a pattern called “Enterprise Service Bus (ESB)”, which was
reviewed by a traditional WW in PLoP2011 and used in our previous work. Thus, we believe the results will
clearly show the effectiveness of our approach. The experiment involved with four participants, including
three master students and the first author of this paper. All students had some knowledge about patterns,
but some were not familiar with the WW format. Thus, we gave a brief explanation before starting the mini
WW as well as undertook the following preparation steps prior to the experiment:

 CBR: A customized checklist was prepared by combining the two-level checklists (Table 3).
 PBR: Three perspectives (designer, tester, and quality engineer) were chosen.

4.2 Experiment Results and Discussion

Figure 2 shows the number of comments received in each review, including the original WW in PLoP2011,
our previous work, and the results of this experiment. Detail comments could be found in table 7 and 8
(Appendix). To answer RQs 1 and 2, the comments were categorized based on whether they focused on a
general topic (structure and form) or pattern details and specific contents.

Figure 2.Number of comments received for each review process

To illustrate the efficiency of our process, Table 6 shows the reviewing time costs and the calculated the
efficiency, which is determined by dividing total number of comments by the time.

6
11

1

8

2

5

10

9

2

7

0

5

10

15

20

25

WW CBR(Previous) PBR(Previous) CBR(Revised) PBR(Revised)

General Comments Specific Comments

Two-level Checklists and Perspectives: Software Reading Techniques for Pattern Writer’s Workshop: Page - 9

Process Total Comments Time (min) Efficiency

WW 11 40 0.275

CBR (previous) 21 45 0.467

PBR (previous) 10 45 0.222

Our process (CBR&PBR) 19 40 0.475

Table 6.Time cost and efficiency of each review process

RQ1. Does the two-level checklist increase the number of general comments compared to a single
checklist or a traditional WW?

 According to Fig. 2, eight of the ten comments were general ones using CBR, which is more than from the
traditional WW. Although the CBR comments provided specific feedback such as the “target audience is
unclear,” most comments were general comments, demonstrating that the two-level checklist helps
participants provide general comments about the form and structure of the pattern. In contrast, there were
fewer general comments than in our previous experiment. This discrepancy is likely due to the way
comments were recorded. Our most recent experiment did not count simple comments such as, “Yes, it
has a good name” as these may not be valuable to the author. However, several of these simple
comments were counted in our previous work. These results show that a two-level checklist is more
effective than a traditional WW but not necessarily an improvement compared to a single checklist.

RQ2. Does the PBR provide more specific comments than a traditional WW?

Compared with the original WW, PBR helps participants focus on detailed content and give more specific
comments. Participants were able to review the pattern details based on the assigned perspective and
discuss the pattern with a deeper understanding. However, we noticed that the number of comments did
not increase; actually, there were fewer comments compared to our previous approach even though the
problem of unsuitable perspectives is resolved. In addition, we were unable to verify the utility of the
perspectives for the stakeholder of a pattern (i.e., Table 5) because our participants are neither authors of
other patterns nor related patterns. Although our PBR technique provides more specific comments, some
problems, which require further study, may still exist.

RQ3. Is our process more efficient than a traditional WW or a single checklist?

According to Table 6, our experiment produced 19 comments in 40 minutes. The proposed PBR is nearly
twice as efficient as a traditional WW and our previous PBR. Although the two-level checklist has an
efficiency similar to the previous single-level CBR, some simple comments were not recorded during the
latest experiment. Thus, the two-level checklist more efficiently generates comments than a traditional WW
and our previous research experiments.

4.3 Experiment Summary

The results did not fully meet our expectations. According to RQ1 and RQ2, we failed to confirm any
improvement over our previous work because fewer comments than expected were generated. On the
other hand, several contributions of a two-level checklist were confirmed. First, participants easily applied
our process after only a brief explanation, resulting in the best efficiency (RQ3) and resolving the problem
of an “ambiguous process” (P4). Second, the time duration of our process is almost same as traditional
WW, suggesting that our approach could easily replace traditional reviews. Third, the customized checklist
and perspectives are beneficial. Participants understood the checklist content, even if it was their first WW
experience. Fourth, all the participants confirmed that their assigned perspectives for PBR were meaningful
for reviewing the pattern and that the checklist assisted in providing meaningful comments.
 In conclusion, our approach realizes a process to successfully review pattern papers in a WW and
generates more comments in the same amount of time as a traditional WW. Additionally, our approach is
easy to understand and resolves several problems noted in our previous research. However, if the authors
prefer to receive comments as many as possible, it is unclear whether the two-checklist approach is more
beneficial than a single-checklist approach.

Two-level Checklists and Perspectives: Software Reading Techniques for Pattern Writer’s Workshop: Page - 10

5. CONCLUSION

Herein we propose an approach, which creates a two-level checklist for Checklist-Based Reading (CBR)
and extends Perspective-Based Reading (PBR), to solve several problems noted in our previous research
that introduces reading techniques into WWs. We also show how to use each review technique and
describe the process for an improved WW (including its preparation) using our checklists. A small
experiment confirmed the benefits of a two-level checklist in resolving some previous issues.
 In the future, we plan to continue studying this topic. Specifically, we plan verify the usefulness of different
stakeholders, make the checklist more customizable according to pattern authors’ requirements, conduct
additional experiments to verify and fine-tune our approach, and identify the merits and drawbacks. We are
planning a focus group at EuroPLoP 2015 and conducting an experiment aimed at improving our review
techniques.

6. ACKNOWLEDGMENTS (TBD)

Our thanks go to shepherd Jason Yip for his careful review that improved this paper. We also thank to the
participants from Washizaki’s Lab at Waseda University (Frederik Nakstad, Harlin Ismail Rizky, Rizki
Amelia) who participated in the case study.

APPENDIX

In order to show the difference between traditional WW and our experiment, we conclude the comments in
each case in the following table.

Comments
This article explain the pattern clear by using several figure

Article has a good structure (people can find traditional parts like example, force, problem and solution in the article)

ESB can be accepted to some element pattern learner

It matches the force and the problem

Force is given like some one line requirement, which divide a difficult problem to several simple part

No detail way about how to use ESB

This article is introducing rational but not implementation

A service can be connected to the system as every company use their own server for ESB

Multiple ESB server can be considered

There are no exact example for ESB

Cost of ESB should also be discussed (manager want to know it)

Table 7. Comments received in traditional WW (PLoP2011)

CBR

Category Comments
Domain and
Scope

Figure 4 shows the relationship with relation pattern

Structure Many figure are used for explanation

Structure Dynamic figure is good for showing extra information

Forces Force is shown clear and readable

Know uses and
reference

This pattern has strong known usage by giving example of some big companies

Domain and
scope

It’s better to declare its audience clear in the paper

Structure No implement example is provided

Problem and
solution

Problem does not catch enough. More information should be provided.

Forces Force could be arranged by functional and nonfunctional

Forces The relationship of solution and force are not shown clear

Two-level Checklists and Perspectives: Software Reading Techniques for Pattern Writer’s Workshop: Page - 11

PBR

Perspective Comments

Designer This pattern is shown clear and can be quickly understand for designer
Designer There are several important concerns existing in forces.
Tester System is not so complicate for test
Tester This pattern is more like a module solution
Tester Hardness of testing the ESB should be considered
Quality Engineer Its Force show how it contribute to increase quality well.
Quality Engineer Liability is good on showing some potential risk
Quality Engineer This pattern might discuss more about its effectiveness on quality in the paper.
Quality Engineer This pattern didn’t show the motivation of dealing with the liability

Table 8. Comments received in our case study

REFERENCES

Hironori Washizaki, Tian Xia, and Yoshiaki Fukuzawa, “Introducing Software Reading Techniques into Pattern Writer’s Workshop:
Checklists and Perspectives”, 4th Asian Conference on Pattern Languages of Programs (APLoP), 2015
Hillside Group, “How to Hold a Writer’s Workshop,” and "Suggestions for a Successful Writer's Workshop,"
http://hillside.net/component/content/article/65howtorunplop/235howtoholdawritersworkshop
Richard P. Gabriel, "Writers' Workshops & The Work of Making Things," Addison Wesley, 2002.
James O. Coplien, "A Pattern Language for Writers' Workshops," in Pattern Languages of Program Design 4, Addison-Wesley, 2000
IEEE Std 610.12-1990 (R2002), “IEEE Standard Glossary of Software Engineering Terminology,” 2002.
Keun Lee, "Development and Evaluation of Value-Based Review (VBR) Methods," VDM Verlag, 2008.
Thomas Thelin, Per Runeson and Claes Wohlin, “An Experimental Comparison of Usage-Based and Checklist-Based Reading,” IEEE
Transactions on Software Engineering, Vol.29, No.8, pp.687-704, 2003
Forrest Shull, "Software Reading Techniques," Encyclopedia of Software Engineering, John Wiley & Sons, 2002.
Forrest Shull, Jeffrey Carver, Guilherme H. Travassos, Jose Carlos Maldonado, Reidar Conradi, Victor R. Basili, "Replicated studies:
building a body of knowledge about software reading techniques," Lecture notes on empirical software engineering, pp.39-84, 2003.
Christopher Alexander, “The Timeless Way of Building,” Oxford University Press, New York, 1979.
Tiffany Winn and Paul Calder, “Is This a Pattern?,” IEEE Software, Vol.19, No.1, pp.59-66, 2002.
Deepak Alur, John Crupi, Dan Malks, “Core J2EE Patterns: Best Practices and Design Strategies,” Pearson Education, 2001.
 Will Tracz, “RMISE Workshop on Software Reuse Meeting Summary,” Software Reuse: Emerging Technology, IEEE CS, 1988.
Gerard Meszaros and Jim Doble, "A pattern language for pattern writing," Pattern languages of program design 3, pp.529-574,
Addison-Wesley, 1997.
Neil B. Harrison, "The Language of Shepherding: A Pattern Language for Shepherds and Sheep," Pattern Languages of Program
Design 5, Addison-Wesley, 2006.
ISO/IEC 25010: 2010 Systems and software engineering-Systems and software Quality Requirements and Evaluation (SQuaRE) -
System and software quality models, 2010.
IEEE Std 830-1998 IEEE Recommended Practice for Software Requirements Specifications, 1998.
Hiroyuki Okamoto, et al., "An Experimental Evaluation of Individual Review Methods Focusing on Software Requirements
Specifications Characteristics," SQiP Study Group Report, 2004. http://www.juse-sqip.jp/workshop/seika/2004/6/6_report.pdf
Eduardo B. Fernandez, Nobukazu Yoshioka, and Hironori Washizaki, “Two patterns for distributed systems: Enterprise Service Bus
(ESB) and Distributed Publish/Subscribe,” 18th Conference on Pattern Languages of Programs (PLoP), 2011.

