
A third-party extension support framework using
patterns

Yiyang Hao
School of Fundamental

Science and Engineering
Waseda University

Tokyo, Japan
Email: felixhao@moegi.waseda.jp

Hironori Washizaki
School of Fundamental

Science and Engineering
Waseda University

Tokyo, Japan
Email: washizaki@waseda.jp

Yoshiaki Fukazawa
School of Fundamental

Science and Engineering
Waseda University

Tokyo, Japan
Email: fukazawa@waseda.jp

Abstract—Software extension is a fundamental challenge in
software engineering which involves extending the functionalities
of a software module without modifying it. Many modern
software developers choose to adapt third-party extension plat-
form to further improve customizability. As the project evolves,
the requirements may change to include third-party extension
support. However to design and to implement such platform
is no trivial task, and should happen at the beginning of the
project. In this paper, we have shown the four types of extensions
that are often made to object-oriented software, namely Member
Access Extension, Subclass Extension, Event-based Extension and
Data Extension. And proposed a language-independent platform
design that can be applied to an existing software project
to support such third-party extensions. The platform exercises
design patterns to implement its features. We also developed
an Eclipse plugin that helps developers introduce the platform
to existing Java software via semi-automatic code manipulation.
We further conducted a comparative experiment to test our tool
with volunteers from Waseda University and noticed a significant
decrease of required effort.

I. INTRODUCTION

Software extension is a fundamental challenge in software
engineering [21]. Software extension involves extending the
functionalities of a software module without modifying it [17].
This can be achieved during the software evolution to adapt to
the changing environment and requirements [15] or after the
release of the software by third-parties via third-party software
components, e.g. [12] and [11]. Software extension by third
party is a common practice in modern software. A well-known
example is Eclipse Rich Client Platform [18]. By the end
of January 2015, there have been over 12 million copies
of near two thousand extensions downloaded from Eclipse
Marketplace [1]. Other notable examples are web browsers [5]
[2] and video games [3], where such behavior of making or
using extensions are often informally referred as “modding”.

Unlike traditional software extension developed by original
developers, third-party extensions bring huge potential for
software user customization. And user customization is a well-
needed feature for commercial software [19] [9]. Beside from
the obvious benefits for users, a customizable software also
has such benefits for developers that the software can satisfy
conflicting needs from different user groups and potential
reduction of the development and maintenance cost, given

that certain features are developed by third parties. Supporting
extensions developed by third parties usually requires sepa-
rating the core part from potential hotspots at the beginning
of a project. However it is hard to take every requirement for
customization into consideration at first place. So an extension
support framework must be extensible itself. Those extensions
developed and distributed by third parties are also referred
as plugins or mods. In the rest of the paper, we use the
term extension to refer to software components developed by
third parties that aim to extend the functionalities of original
software.

An extension support framework usually provides APIs
(application programming interface) to allow extensions to
interact with the software. In this paper, we analyzed and cate-
gorized the APIs used in practice, and suggest implementations
for the four types of APIs using software patterns. To evaluate
our approach through user study, we implemented an Eclipse
plugin for Java programs for the experiments. Through our
approach, we aim to ease the introduction of extension support
to existing inextensible software.

The contribution of this paper includes:
• Having conducted a case study on the API design and

implementation a popular video game called Minecraft,
which is a typical example of implementing API upon an
existing software.

• Categorizing types of the extensions made by third-parties
into four categories, namely Member Access Extension,
Subclass Extension, Event-based Extension and Data
Extension.

• Suggesting a way to implement APIs for third-party ex-
tensions of the four types using existing software patterns
and other techniques including code clone detection and
reflection.

• Evaluating the approach through a comparison on the
efficiency and performance of developers who use our
approach or not to achieve the same objectives.

II. THIRD PARTY EXTENSIONS

We are going through this topic by answering the following
two questions:

1) RQ1 What kinds of functionalities are extended?

Fig. 1: Object initialization using member functions.

Fig. 2: Register names upon loading.

2) RQ2 How are third party extensions supported?
To answer these questions we have to narrow them down.

So we did a case study on a video game called Minecraft and
its open sourced API implementation, Forge [4]. Forge is the
implementation of the API set for extension developers. It is
written in Java and consists of 199 source files and 28320
lines of code. Forge is separate from Minecraft and serves as
the implementation of APIs in the form of Java source code,
and requires Java binary of Minecraft to work.

We choose Minecraft as the target project of the cast study
because it is a well-developed and commercially successful
video game, currently owned by Microsoft, and most impor-
tantly, it has a huge extension community including more
than 50,000 members on the official forum and 1,500 released
extensions.

A. What functionalities are extended?

Forge supports various extensions to the game. We cat-
egorize them in to 4 groups. Forge includes decompiled
obfuscated Minecraft source.

Member access: Firstly, Forge allows extensions to access
some member fields and some member functions of classes
from Minecraft. For example, in Figure 1, Block is a class
from Minecraft and GenericBlock is a subclass of Block
defined by third party. Third party can access member func-
tions inherited from super class Block to set the properties of
a new GenericBlock instance.

Subclass: Secondly, as we can also see from Figure 1, Forge
makes some classes like Block visible and inheritable. The
produced subclasses can be directly used as if they are declared
in original software. Such inheritable classes share the same
characteristic that (1) they are all related to domain knowledge
and (2) they tend to have many subclasses in original software.

Event-based: Thirdly, there are many time-restricted pro-
cesses required from or provided for extensions. For example
every extension needs to register its information into a global
registry before the initialization of the game itself Figure 2.
An extension sometimes works as a passive content provider
instead of actively interfering the execution of software.

Data extension: Finally, Forge provides manipulation of
some data collections. For example, in Figure 2 we can see
an extension add the name of genericItem and genericIngot
into the LanguageRegistry using addName interface provided
by Forge.

B. How are third-party extensions supported?

Annotations: Forge extensively uses custom annotations, a
Java language feature, to ease the development of extensions.
Typically, extension developers use “Mod” annotation to spec-
ify the main class of an extension, and “EventHandler” anno-
tation to register an event listener method. Using annotations
by frameworks to apply behaviors to user-defined classes and
methods is common practice. But they have the disadvantage
that they are only supported by Java and can be hard to find
an alternative for another programming language.

Event bus: Event bus in Forge is implemented using publish-
subscribe pattern. Many events in Minecraft will notify every
subscriber in every loaded extension.

Subclass: Minecraft is not an open source software. But
Forge includes decompiled obfuscated Minecraft source, thus
making deriving subclasses possible at language level. How-
ever, it is not always feasible to include source in API
implementations and open them to third parties.

Registries: Registries are the solution to adding data into the
game. These registries, e.g. EntityRegistry and GameRegistry,
provide interface to add new instances to the data containers in
Minecraft. Those data containers are abstract data type classes.

Hooks: Forge contains four hooks, namely
ChestGenHooks, DungeonHooks, FishingHooks
and ForgeHooks. Those hooks play as middle-men between
data providers and data users. Typically, ChestGenHooks
maintains a private data container for possible loot for chests.
When either or tries to generate loot for a chest, the private
data container will be checked if it should be used based on
the rules set up by extensions. If not, the method invocation
will be passed on to original Minecraft to use the default
data container. Extensions can interact with the private data
container and therefore can override the default behavior of
the data container in the software. Those data containers are
arrays with fixed length.

Forge Mod Loader (FML) is a module in Forge that handles
connecting extensions that are in the form of compiled Java
jar files with Minecraft and serves as an extension container.
The implementation of FML extensively uses low-level Java
bytecode operations like de-obfuscating, so that framework is
hardly reusable for general purposes.

III. APPROACH

The previous subsection described the implementation of
Forge for supporting third-party extensions. Their methods will
have some issues if we want to use directly in a language-
independent platform design. First, annotation is a language-
specific feature. Second, hooks serve as a specific use case
of event dispatching system and may not be necessary. Third,
Forge decompiles Minecraft source to make classes visible to
extensions, which can be illegal for many commercial soft-
ware products. Lastly, replacing original data containers with
registry logic requires a decent amount of code modification,
especially when the original data container is a simply data
type. That means every access to the container needs to be
reworked.

Fig. 3: Platform Infrastructure.

Fig. 4: Member Access through Proxy.

This section presents a third party extension supporting
solution. Our solution covers the four types of extensions while
retain minimal modification to original software and language
independence. Our approach also does not require the source
of original project open to third party.

A. Platform infrastructure

The basic infrastructure (Figure 3) contains extension
support module embedded into original software and an API
implementation package public for third party to use. Ex-
tension support module communicates with extensions using
reflection. API Implementation handles the communication
and makes it encapsulated and separate from the domain
knowledge inside extensions.

B. Making Hotspots Extensible

As described in the previous section, there are four types of
hotspots to deploy extension support framework. Our approach
applies software patterns to original software to make the
hotspots extensible.

C. Member Access Extension

To access member fields and methods from a class which is
not visible for extensions, we suggest using proxy pattern to
create proxy classes of the classes that are to be accessed. For
example, In Figure 5 we have a class A in the software, then
we create a proxy class for A that delegates some methods in
A, thus allowing the extension uses those method via interface
(Figure 4).

If we look at the case of Block class from Minecraft
(Figure 1), GenericBlock needs to have a proxy class for it to
be accessible from extensions. And since there is no guarantee
that the proxy class of a class A, noted as A proxy, remains
to be the child class of the proxy class of A’s father, noted
as SuperA proxy, the resulting genericDirt object cannot

Fig. 5: Proxy Pattern.

Fig. 6: Factory Pattern.

be referred as a Block object directly. A explicit class casting
from a proxy class to another proxy class should be used.

D. Subclass Extension

Many languages do not support creating new classes dy-
namically. So in our approach, we use a subclass factory
to produce the instances of subclasses of a certain class.
For example, In Figure 6 class subA is a subclass of class
A. Class subA maintains a method overriding table and it
overrides some methods in A in a way that it first checks if
the invoked method is overridden in the extension via querying
the method overriding table, if the method is overridden,
then the execution will be handed over to the overriding
implementation of the method, otherwise, it calls the method
from its super class, A. Class subA works as if it is a decorator
of A except that it is an actual subclass of A. The pseudo-
code of this process is shown in Algorithm 1. The interface
to register overriding method in method overriding table is
available in a factory class. Proxy pattern is then used to
provide proxy class for the factory to allow accessing the
interface from the extension.

Algorithm 1 Overriding with decorator

function m(parameters)
if m is registered in overriding table then

m new ← overriding table.get(m)
m new(parameters)

else
superclass.m(parameters)

end if
end function

Fig. 7: Publisher-Subscriber Pattern.

All classes are managed through proxy classes in our
platform. So the proxy for super class will also be the factory
for its subclasses. In another word, all factory related methods
are defined in the proxy class of the super class. However
many languages do not allow dynamic class declaration and
factories can only produce objects. So the generated subclass
object should be an abstraction of the subclass and a factory
for producing the instances of that subclass. For example, the
code from Algorithm 2 will be used to create a subclass from
class A and overriding method m of A with new method.

Algorithm 2 Creating a new subclass with a proxy class

Proxy subA← Proxy A.subclass()
method←MethodReflection(′m′)
Proxy subA.override(method, new method)
subA instance← Proxy subA.instance()

1) Event-based Extension: The framework will maintain a
publish-subscribe model for events. When a certain event is
fired, a new event instance will be pushed to the bus and then
dispatched to subscriber extension. Figure 7

In the case of Figure 2, load method should be registered
as a subscriber for a “game load” event and that event should
be fired upon the very start of the program.

2) Data Extension: As stated in the previous section, there
are two types of data containers. The first one is ADT and
the second one is language native data structure, e.g. arrays.
After observation, we found that such data containers are
used in a special pattern where successive lines of code share
very similar code structure. We suggest an automatic detection
algorithm for such kind of usage based on the abstract syntax
tree (AST) similarity between the adjacent lines.

Our algorithm differs from code clone detection in the
following ways:
• Our algorithm can have a much finer granularity than

code clone detection which usually compares several lines
of code. In the algorithm below, we show the process of
detecting similar data container operations in consecutive
statements. A statement can be easily replace with finer
syntax elements like array initializer elements to detect
data extension in other forms.

• Code clone detection aims to find code clone among the
whole software source code, while our algorithm aims to
find a unified pattern of usage of active data accessing
and manipulation within a short distance span, whether
in terms of time or offset in file.

• Our algorithm not only detects similar code structures, but
also generates a syntax tree representation of the detected
code structure with concrete information of identifiers and
types that are shared among the code. The different parts
are marked as blanks in the generated syntax tree so that
third-parties can easily fill in the blanks and reuse the
code structure we detected.

IV. IMPLEMENTATION

We made a tool that uses automatic code manipulation to
facilitate the implementing of the discussed software patterns.
Users of the tool, meanwhile authors of the software, are able
to take advantage of our approach within a few clicks and a
few lines of code.

Java allows reflection and Java Archive (JAR) and we use
them to implement most of the features of the tool. Native
reflection and JAR management require too much focus on
such low level operations, so we need properly encapsulations
and make them hidden from end users.

A. Platform infrastructure

Each extension is in a form of a JAR file and there is a
unified entry point of an extension, which is a Addon class.
The tool will first generate an extension manager which loads
all classes from extension JAR files into memory at the start of
the software and offers basic supporting functions for the four
types of extensions. The supporting functions will be explained
in the following subsections.

B. Member Access Extension

The tool performs actions on existing software and provide
interfaces for extensions to access internal fields and methods
via reflection. As stated before, we will practice proxy pattern
to make it happen. For each class that is allowed to be visible
and accessed by extensions, a corresponding proxy class will
be generated. And for each such field, a getter and a setter
will be generated in the corresponding proxy class. The getter
and setter use reflection to get and set the value of the field
of corresponding object. And for each method visible and
accessible for extensions, a dummy method will be generated.
And it will use reflection to invoke the original method.

Due to security concerns, the user has to explicitly specify
which methods and fields should be exposed to extensions,
so that extension authors will interfere with internal logic less
likely.

1) Input: original classes, fields to be exposed, method to
be exposed

2) Output: proxy classes, getters and setters, dummy meth-
ods

C. Subclass Extension

Java does not allow dynamic class declaration during run-
time. And we found a way to mimic inheritance by main-
taining a method overriding registry using Algorithm 1. The
interfaces provided by our tool are pretty much shown in
Algorithm 2. For the ease of explanation, we are going to
use the same names for the classes in Figure 6. During
Step 1, Proxy A will look for the subA factory class with
reflection. If it is found, then Proxy subA will be created
as the proxy class of subA factory. subA factory is a
class generated by our tool when the user specifies A as an
inheritable class. During Step 2, MethodReflection class
will create a method signature called m. Later in Step 3, the
signature will be used to find the m method in class A and
then register new method as the overriding method of m.
Lastly in Step 4, subA factory will produce an instance of
a dummy subclass of A and pass the overriding registry to
it. So that subA instance is capable of invoking registered
new method.

However, this approach is not compatible with native Java
language features. So users have to use predefined methods
rather than Java syntax as the interfaces to create and to use
new subclasses.

1) Input: classes to be inheritable
2) Output: dummy subclasses, subclass factories, proxy for

subclass factories, method overriding support

D. Event-based Extension

The extension manager generated by our tool maintains an
event bus where all events are fired and dispatched.. When the
user wants to create a notification or to get a value from the
extensions, an event should be created with a proper name and
then the event will be dispatched to extensions.

E. Data Extension

We created a GUI for displaying and editing detected similar
adjacent lines. When the tool is launched, the user will choose
inheritable classes from a list suggested by the tool based on
the number of the children (Figure 8). After that, a window
for managing patterns of similar adjacent lines is shown
(Figure 9). The first area of Figure 9 is a list of detected
patterns. When a user choose a pattern from the list, area 2 will
show the related source code. And area 3 will show the AST of
the pattern. The differences between the AST of adjacent lines
of code are marked as “mismatch” in area 2. Users can assign
a “variable” to a “mismatch” with a name and a type, and it
will be displayed in area 4. After all patterns are examined
and proper “variable”s are assigned to every “mismatch”, a
“join point” will be inserted after the related code for each
pattern. When the “join point” is met during execution, the
corresponding pattern will be loaded into a pattern executor for
execution. The “variable” is used during the execution when
a “mismatch” is found. The extensions will be asked for the
value of the “variable” and for each value extensions return,
the pattern will be executed once with that value to replace
the “mismatch”.

Fig. 8: GUI: Choosing classes to be inheritable

Fig. 9: GUI: Managing patterns of data extension

V. EVALUATION

Our approach is evaluated based on these three questions.
1) RQ3 Is it easier to implement the four types of exten-

sions APIs with our approach?
2) RQ4 Does this approach help lower the cost of devel-

opment?
3) RQ5 Does this approach lower the complexity of code?
We implemented our approach as a tool in the form of an

Eclipse plugin for evaluation purpose. The tool is designed for
the developers of the original software. And it provides auto-
matic source code generation and manipulation to implement
the solutions we described in the previous section.

The main objective of this experiment was to tell whether
implementing extension API for existing software that was
not designed for extension at first place easier. And then, we
evaluated other aspects of software development like cost and
code quality.

A. Is it easier to implement the four types of extensions APIs
with our approach?

We collected 5 participants from graduate and undergradu-
ate students who major in computer science and have decent
knowledge and experience about Java programming. They are
asked to implement a set of APIs that involve all four types
of extension for the target project TinyWorld [6]. TinyWorld
is a relatively simple open source video game written in
Java. Some of the APIs are not required to be implemented
by undergraduate students due to the difficulty. Before the

experiment, they are provided with necessary information
about the project and a document of the APIs they are asked
to implement.

They will implement the APIs twice by using our approach
and without using our approach. And after the experiment, we
examine how many APIs are implemented correctly.

B. Does this approach help lower the cost of development?

We use number of files and lines of code (LOC) on
each How produced attribute [20] to measure the cost of
development. How produced consists of 5 attributes, including
programmed, generated with source code generators, copied or
reused without change, modified and removed. The assumption
is that with lower number of files and lower LOC, the cost
should be lower. Only the participants who implemented all
requested APIs are included in the statistical analysis.

We also recorded the time parcitipants spent on completing
each task. The time is estimated by the parcitipants themselves
rather than measured directly since they spent time on getting
familiar with both the target project and our approach when
they are in the experiment group. The time was asked after
they completed the experiment about how long they thought
they spent on implementing the requested APIs.

C. Does this approach lower the complexity of code?

We compared the average cyclomatic complexity and the av-
erage lines of code per method of the implementation made by
control group and experiment group. The average cyclomatic
complexity of the control group is 1.7075, and the experiment
group 1.36. The average lines of code per method of the
control group is 8.02875 and experiment group 5.27. Both
metrics dropped when students take our approach. Cyclomatic
complexity dropped to 79.6% for experiment group comparing
to control group and the average lines of code per method
dropped to 65.6%.

After the experiment, we handed out a simple questionnaire
to each participant on the objective opinion on developing
experience. The questionnaire included two questions:
• Do you think our approach is helpful when implementing

APIs? If so, how is it helpful?
• Do you prefer implementing APIs with our approach or

without our approach?
Every one of the 5 participants stated our tool were some-

what helpful. And every one of the 5 participants said they
preferred implementing the APIs with our approach.

VI. RESULT

We collected the implementations of the APIs from all
five participants, including total 47 files and 1,092 LOC from
control group and 187 files and 9,425 LOC from experiment
group in terms of the change metrics.

A. Is it easier to implement the four types of extensions APIs
with our approach?

Without our approach, two undergraduates of our partici-
pants only correctly implemented 4 out of 6 requested APIs,

(a) Number of Files. (b) Time Spent.

Fig. 10: Code Metrics

Fig. 11: Lines of Code.

while the rest (3 graduate students) implemented all 10 re-
quested APIs correctly. With the Eclipse plugin we provide, all
of them implemented all requested APIs (6 for undergraduates
and 10 for graduate students) without problem. Our approach
makes implementing the APIs easier for undergraduate stu-
dents.

B. Does this approach help lower the cost of development?

In our experiment, among the five attributes of How pro-
duced, only programmed, generated with source code gen-
erators and modified happened in the number of files. In
Figure 10a, Figure 11, group 1 is the control group where
our tool is not provided, and group 2 is the experiment group
where the participants are requested to use our tool. From
the figures we can easily see that the implementations from
experiment group have a significantly lower number of files
and lines of code programmed and modified. The experiment
group produced more files and LOC generated with source
code generators because our tool has source code generation
feature. The average modified LOC of the implementations
from the experiment group is actually a little bit higher than
that from control group. But the difference of programmed
LOC is so large that the difference of modified LOC can be
negligible. Our approach reduces the cost of developing APIs
significantly.

In Figure 10b we see that control group spent more time
on finishing the experiment than the experiment group. On
average, 3.38 hours were spent for each task for experiment
group and 5.33 hours for control group. So 1.96 hours were
saved using our approach for each task on average. Thirty-
minutes long tutorial on our approach and our tool is not
included in Figure 10b.

Metrics Control
Group

Experiment
Group

Reduction

of files (programmed
and modified)

8.75 4.88 44.3%

LOC (programmed and
modified)

228.33 102.5 55.1%

Time spent 5.33 3.38 36.8%
Cyclomatic complexity 1.71 1.36 20.5%
Avg. LOC per method 8.03 5.27 34.4%

TABLE I: Comparing Control Group with Experiment Group

Fig. 12: Complexity Metrics.

C. Does this approach lower the complexity of code?

We compared the average cyclomatic complexity and the
average lines of code per method of the implementation
made by control group and experiment group. The average
cyclomatic complexity of the control group is 1.71, and the
experiment group 1.36. The average lines of code per method
of the control group is 8.03 and experiment group 5.27. Both
metrics dropped when students take our approach. Cyclomatic
complexity dropped to 79.6% for experiment group comparing
to control group and the average lines of code per method
dropped to 65.6%. In Figure 12 we can see that medians
and overall distribution of both complexity metrics from
experiment group (group 2) is significantly lower than it of
control group (group 1). In addition, our approach provided a
unified solution to third-party extension support and greatly
diminished the variance of code structure so the average
cyclomatic complexity from experiment group has a much
lower standard deviation than it from control group.

Compiling all collected data together and we have Table I,
which brings the answers to the three research questions about
evaluation.

VII. THREATS TO VALIDITY

The experiment was conducted with limitations. We list
some of the threats to validity in this section.

A. Threats to Internal Validity

Instrumentation: For the experiment group, they are offered
with a tool in the form of an Eclipse plugin. And we taught
and encouraged them to use it. The tool will automatically
implement most parts of the platform design in our approach.
The participants could possibly treat the tool and the inter-
faces it provided as requirements rather than supplements. So

that they would prefer generated code untouched than make
adjustments to it. This may decrease their performance. On
the other hand, for the control group, reflection was the main
tool they used to develop the APIs.

Compensatory rivalry: All participants were aware of the
two groups and they knew which group they were in. This
may cause participants in control group to try to compensate
the lack of tool by putting extra efforts.

Diffusion of treatment: Every participant attended both
groups due to the lack of participants. Starting with one group
will surely improve the knowledge of the participant before
starting with the other one. Since starting with one group first
may influence on the performance when the participants was
in the other group, we purposely chose randomly half of the
participants to start with control group and the other half with
experiment group. The duration of the experiment we used
in analysis was estimated by participants themselves on how
long do they need after getting familiar with the project.

B. Threats to External Validity

Population validity: All participants are students volunteers
majored in software engineering from Waseda University. The
6 participants cover 3 different nationalities, aging from 23 to
29. Two of them had industry development experience with
Java and others had written a few small Java projects. Despite
that, they are after all students and might still not represent
the average level of developers.

The target project is TinyWorld, a open-source Java video
game. I chose TinyWorld because of its simplicity and all
four types of extensions applicable. However a more complex
project or another type of software or being written in another
programming language may prove different. Experiments on
other types of software and other programming languages may
be our future work.

VIII. RELATED WORK

Aspect Oriented Programming (AOP) is a programming
paradigm that aims to boost isolation, composition and reuse
of the code [14]. Several researches have been done on
utilizing AOP for better extensibility. Kulesza et al. Alves et
al. [7] and Calheiros et al. [8] use AOP to make product line
evolvable to develop software of same domain. They suggest
that to extract product-specific code and encapsulate it into
aspects. Then, they use AOP to provide different implemen-
tations for those aspects and thus achieving evolvability. In
the paper, they show an example of porting a J2ME game
on different platforms with their approach. However AOP-
based approaches fall short in these areas where either (1)
AOP requires the development of the software done with AOP
or (2) a potential massive refactoring must be done to make
the software AOP-compatible.

Refactoring, or more generally, source code transformation,
is another widely used means of improving source code
quality including extensibility. Such technique usually starts
with detecting “bad smells” [10] and then proposes source
code modifications to eliminate those bad smells. Ratzinger

et al. [22] suggest that we can improve evolvability through
refactoring. Tahvildari et al. [24] introduced a quality-driven
OO software transformation framework which includes an
instructive detection and transformation guide for primitive
design patterns. These works are similar to our idea in that
a bad smell detection is used to locate target code snippets
and the goal is to improve some quality attributes. However,
improving extensibility requires more specialized bad smell
detection criteria and code transformation practice, moreover
our goal reaches further than improving some quality at-
tributes, because we aim to implement the support for third-
party extensions which is an addition to the functionalities of
the software.

Code clone detection is similar to one of the technique we
use to automatically detect Data Extension type of extension.
Code clone is the high identicalness of two separate code
fragments. CCFinder [13] presents a typical design of code
clone detection system which transforms and tokenizes code,
and then performs a text-based comparison on the tokens.
However, code fragment as the basic unit of code clone, is
usually treated as a sequence of code lines. Even just a few
lines of code can sometimes be too coarse for Data Extension
detection. As described previously, Figure 2 shows an example
of data extension happening between two consecutive lines. In
some situations, developers hard-coded items in a primitive
data structure like “Array” type in Java language in one
single logistic line of code. Another reason for existing code
clone detection techniques to fail in our use case is that
code clone techniques focuses on finding remote clones rather
than a dense set of operations on one data container [23].
So discovering code similarity within such fine-grained code
structures cannot be achieved by conventional code clone
detection tools.

IX. CONCLUSIONS

In this paper, we have shown the four types of exten-
sions that are often made to object-oriented software, namely
Member Access Extension, Subclass Extension, Event-based
Extension and Data Extension. And proposed a language-
independent platform design that supports such extensions.
The platform exercises design patterns to implement its fea-
tures. We also developed an Eclipse plugin that helps develop-
ers introduce the platform to existing Java software via semi-
automatic code manipulation.

To confirm the effectiveness of this platform design and
our tool, we conducted an experiment with 6 participants
as the developers of TinyWorld, an open-source video game
written in Java. In the experiment, we asked them to implement
10 APIs with and without our approach. It turned out that
the amount of effort had been significantly reduced with our
approach.

To conclude, such an approach can help in improving the
extensibility of an existing software. Our future work will be
further investigating into discovering more possible extension
types and testing our approach on a broader selection of
software.

REFERENCES

[1] Eclipse marketplace. http://marketplace.eclipse.org/.
[2] Google chrome. https://chrome.google.com/webstore/.
[3] Minecraft. https://minecraft.net/.
[4] Minecraftforge. https://github.com/MinecraftForge/MinecraftForge.
[5] Mozilla firefox. https://addons.mozilla.org/.
[6] Tinyworld. https://github.com/matheus23/TinyWorld.
[7] V. Alves, P. Matos Jr, L. Cole, P. Borba, and G. Ramalho. Extracting

and evolving mobile games product lines. In Software Product Lines,
pages 70–81. Springer, 2005.

[8] F. Calheiros, V. Nepomuceno, P. Borba, S. Soares, and V. Alves. Product
line variability refactoring tool. In Proceedings of European Conference
on Object-Oriented Programming, pages 32–33, 2007.

[9] P. Dourish. Developing a reflective model of collaborative systems.
ACM Transactions on Computer-Human Interaction (TOCHI), 2(1):40–
63, 1995.

[10] M. Fowler. Refactoring: improving the design of existing code. Pearson
Education India, 2002.

[11] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni,
D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, et al. Quantum
espresso: a modular and open-source software project for quantum
simulations of materials. Journal of Physics: Condensed Matter,
21(39):395502, 2009.

[12] R. Joehanes and J. C. Nelson. Qgene 4.0, an extensible java qtl-analysis
platform. Bioinformatics, 24(23):2788–2789, 2008.

[13] T. Kamiya, S. Kusumoto, and K. Inoue. Ccfinder: a multilinguistic
token-based code clone detection system for large scale source code.
Software Engineering, IEEE Transactions on, 28(7):654–670, 2002.

[14] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-
M. Loingtier, and J. Irwin. Aspect-oriented programming. In
ECOOP’97Object-oriented programming, pages 220–242. Springer,
1997.

[15] A. C. Kouskouras, Konstantinos G. and G. Stephanides. Facilitating soft-
ware extension with design patterns and aspect-oriented programming.
Journal of Systems and Software, 81(10):1725–1737, 2008.

[16] U. Kulesza, V. Alves, A. Garcia, C. J. De Lucena, and P. Borba. Im-
proving extensibility of object-oriented frameworks with aspect-oriented
programming. In Reuse of Off-the-Shelf Components, pages 231–245.
Springer, 2006.

[17] R. Lämmel and K. Ostermann. Software extension and integration with
type classes. In Proceedings of the 5th international conference on
Generative programming and component engineering, pages 161–170.
ACM, 2006.

[18] J. McAffer, J.-M. Lemieux, and C. Aniszczyk. Eclipse rich client
platform. Addison-Wesley Professional, 2010.

[19] S. R. Page, T. J. Johnsgard, U. Albert, and C. D. Allen. User
customization of a word processor. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pages 340–346.
ACM, 1996.

[20] R. E. Park. Software size measurement: A framework for counting
source statements. Technical report, DTIC Document, 1992.

[21] D. L. Parnas. Designing software for ease of extension and contraction.
IEEE Transactions on Software Engineering, (2):128–138, 1979.

[22] J. Ratzinger, M. Fischer, and H. Gall. Improving evolvability through
refactoring, volume 30. ACM, 2005.

[23] C. K. Roy, J. R. Cordy, and R. Koschke. Comparison and evaluation
of code clone detection techniques and tools: A qualitative approach.
Science of Computer Programming, 74(7):470–495, 2009.

[24] L. Tahvildari and K. Kontogiannis. A software transformation frame-
work for quality-driven object-oriented re-engineering. In Software
Maintenance, 2002. Proceedings. International Conference on, pages
596–605. IEEE, 2002.

http://marketplace.eclipse.org/
https://chrome.google.com/webstore/
https://minecraft.net/
https://github.com/MinecraftForge/MinecraftForge
https://addons.mozilla.org/
https://github.com/matheus23/TinyWorld

	Introduction
	Third Party Extensions
	What functionalities are extended?
	How are third-party extensions supported?

	Approach
	Platform infrastructure
	Making Hotspots Extensible
	Member Access Extension
	Subclass Extension
	Event-based Extension
	Data Extension

	Implementation
	Platform infrastructure
	Member Access Extension
	Subclass Extension
	Event-based Extension
	Data Extension

	Evaluation
	Is it easier to implement the four types of extensions APIs with our approach?
	Does this approach help lower the cost of development?
	Does this approach lower the complexity of code?

	Result
	Is it easier to implement the four types of extensions APIs with our approach?
	Does this approach help lower the cost of development?
	Does this approach lower the complexity of code?

	Threats to Validity
	Threats to Internal Validity
	Threats to External Validity

	Related Work
	Conclusions
	References

