
Detection of Unexpected Situations by Applying
Software Reliability Growth Models to Test Phases

Kiyoshi Honda∗, Hironori Washizaki∗, Yoshiaki Fukazawa∗,
Kazuki Munakata†, Sumie Morita†, Tadahiro Uehara†, and Rieko Yamamoto†

∗Waseda University, 3-4-1 Ohkubo, Shijuku-ku Tokyo, JAPAN
Email: khonda@ruri.waseda.jp,{washizaki, fukazawa}@waseda.jp

†Fujitsu Labs Ltd., 4-1-1 Kamikodanaka, Nakahara-ku, Kawasaki, Kanagawa 211-8588, JAPAN
Email: {munakata.kazuki, morita.sumie, uehara.tadahiro, r.yamamoto} @jp.fujitsu.com

Abstract—In software development, software reliability
growth models (SRGMs) often provide values that do not meet
expectations; sometimes the results of the SRGM and the actual
data disagree and other times the SRGM overestimates the
expected values. The former often occurs in model curves and the
predicted number of faults. For example, the software reliability
growth curve cannot describe the situation where developers
stop testing multiple times because the equations in SRGMs
cannot treat such information. The latter can arise when the
total number of expected faults is 100, but the SRGM indicates
1000. If developers encounter such situations, they often doubt
the SRGM results and hesitate using SRGMs for predictions. In
this study, we apply two different cases of SRGM. Two projects of
Fujitsu Labs Ltd. are analyzed using SRGM either for the entire
dataset or each test phase. Based on the results and interviews
with the developers, we found that the model using separate test
phases provides a better fit because faults counted in each test
phase have different viewpoints and the deviation between SRGM
and expectations indicates a problem with development.

I. I NTRODUCTION

Software reliability is an important component of software.
To evaluate software reliability, several companies have em-
ployed software reliability growth models (SRGMs) in the past
few decades [1] [2] [3] [4] [5]. However, SRGMs have several
issues. One is that SRGMs sometimes misfit the actual data
when development is ongoing. Another is that the results do
not always match the developers’ expectations.

Herein we apply SRGMs to the datasets of two projects
developed by Fujitsu Labs Ltd. in order to determine when
SRGMs provide ill-fitted or unexpected results. We assume
that the detected faults differ by test phase, and this difference
is the source of misfit between the model and actual data.
To investigate the source of unexpected results, two different
SRGMs are used. In the first case, SRGM is applied to the
entire dataset. In the second case, the dataset is divided into
test phases, SRGM is applied to each phase separately, and the
results are summed. Separating the faults into test phases and
combining the results provides a better fitting model.

A. Motivating example

We found two problems when applying SRGMs to an
actual dataset. One is an ill-fit between the model and the
dataset. The other is when we applied SRGM to a dataset dur-
ing the middle of development, the values were overestimated
compared to the anticipated ones.

0

Actual data
SRGM

(A) Difference between data and model

T
h
e
 n

u
m

b
e
r 

o
f 
d
e
te

c
te

d
 f
a
u
lt

Time

Fig. 1. (A) Difference between the actual data and the model. Solid and
dashed lines represent the actual data and SRGM, respectively. Cumulative
number of detected faults for all of Project 1 as a function of elapsed time.

0

Applied time

Actual data
SRGM

(B) Fall short of expectations

T
h

e
 n

u
m

b
e

r 
o

f 
d

e
te

c
te

d
 f

a
u

lt

Time

Fig. 2. (B) Case where SRGM overestimates expectations. Solid, dashed,
and dotted-dashed lines represent the actual data, SRGM, and the time we
applied SRGM, respectively. Cumulative number of detected faults for all of
Project 1 as a function of elapsed time.



Figure 1 indicates that the model and the actual data do not
fit well during the early, middle, and end of development for
the cumulative project. If the model does not fit the actual data,
developers and managers cannot decide development plans
and release times. Moreover, the misfit leads to difficulties
determining when testing is complete. Herein we assume that
the misfit is due to the difference between test phases. Test
processes are separated by purpose (e.g., unit test, integration
test, system test). Therefore, the detected faults depend on the
test phase and related modules or features.

Figure 2 indicates that when we applied SRGM to the
middle of development (at the dashed-dotted line) the model
overestimates the actual data. This means that developers and
managers will not believe the model because it indicates that
too many faults will be found. It is assumed that when devel-
opers and managers apply SRGM depends on the development
situation.

This study aims to answer the following research questions:

1) RQ1: How precise is the SRGM model when faults
are separated by test phase?

2) RQ2: Can continuous fault predictions and monitor-
ing detect unexpected situations?

II. BACKGROUND

Software reliability is important when releasing software.
Several approaches have been proposed to measure reliability.
One is to model fault growth, which is a type of SRGM. Be-
cause software development includes numerous uncertainties
and dynamics regarding development processes and circum-
stances, this section explains SRGM, its uncertainties, and
dynamics as well as provides a motivating example.

We have proposed a model called the Generalized Software
Reliability Model (GSRM) to treat the uncertainties and dy-
namics regarding development processes and circumstances [6]
and studies about predicting release time. We have proposed
a method to predict the release time of open source software
(OSS) by using GSRM [7] and agile development [8]. Addi-
tionally, we have implemented applying GSRM to company’s
datasets [9].

A. Software Reliability Growth Model (SRGM)

Although many software reliability models have been
proposed, the most popular is the non-homogeneous Poisson
process (NHPP) model. However, a recent study has suggested
the Logistic model is the best model followed by the Gompertz
model with regard to fitness [10]. In our study, we employ
the Logistic model and Gompertz model using development
data containing the number of faults detected for a given time.
These models are common in Japan.

The equation of the Logistic model is given by

NL(t) =
Nmax

1 + exp{−AL(t−BL)}
(1)

whereNL(t) is the number of faults detected by timet. If
t → ∞, NL(t) becomesNmax. The parameters,Nmax, AL

andBL can be calculated using R [11], which is a language

and environment for statistical computing and graphics. The
equation of the Gompertz model is given as

NG(t) = Nmax exp(−AGBG
t) (2)

whereNG(t) is the number of faults detected by timet. If
t → ∞, NG(t) becomesNmax. The parameters,Nmax, AG

andBG can be calculated using R.

B. Project monitoring

Although several methods exist to monitor projects, there
are several concerns in software development. The Engineering
Project Management using the Engineering Cockpit is one
method to manage and monitor project situations [12]. It
provides developers and managers with the project specific
information.

Nakai et al. studied how to identify the state of a project
and the quality of a project based on GQM [13] and project
monitoring [14]. They employed Jenkins, which is a continu-
ous integration tool to visualize and collect fault data, lines of
codes, test coverage, etc. They tried to judge the status of the
project from the collected data based on the GQM method.

Ohira et al. developed the Empirical Project Monitor
(EPM), which automatically collects and analyzes data that are
versioning histories, mail archives, and issue tracking records
from multiple software repositories [15]. EPM provides graphs
of collected and analyzed data to help developers and man-
agers. However, EPM is not applicable to analyze SRGMs or
to visualize the results.

III. PROPOSAL TO DETECT UNEXPECTED SITUATIONS

We propose the following method to detect unexpected
situations using software reliability growth models:

1) Separate faults into the phases that they are detected.
2) Apply SRGM daily to each fault.
3) Detect any unusual situations regarding the predicted

number of faults.

The first step clarifies the fault data because the faults
detected depend on the phase. For example, faults detected in
a unit test relate to a specific module or feature, whereas faults
detected in an integration test relate two modules or features.
Consequently, the fault level depends on the phase that the
fault is detected. Additionally, phases progress differently.

The second step applies the SRGM to the faults by phase
to provide the detailed situation of each phase. Moreover, to
monitor the behavior of SRGM, we apply it to each fault
individually. In this paper, we apply SRGM daily to the data of
two projects. We focused on the behavior about the predicted
total numbers of faults, which is the model’s parameterNmax.

The third step monitors the behavior of the SRGM to detect
unusual situations. In the motivating example, we mentioned
that SRGM sometimes overestimates the expected results. It
is assumed that unexpected situations occur in developments.
In this paper, we assess when SRGM behaves unexpectedly in
developments.



IV. EVALUATION AND RESULTS

We show the results for two projects on large-scale embed-
ded software developed by Fujitsu Ltd. Herein these projects
are identified as Project 1 and Project 2. These projects’
qualities have been guaranteed by quality assurance divisions
and sufficiently tested. Figures 3 and 4 show the number of
faults separated by the test phase when there are eight phases.
Although the actual data of Project 1 and Project 2 contain
more than eight phases, we treated only eight because the other
phases do not have enough faults to model by SRGM.

 0

T
h

e
 n

u
m

b
e

r 
o

f 
d

e
te

c
te

d
 f

a
u

lt
s

Time

A
B
C
D
E
F

H
G

Fig. 3. Cumulative number of detected faults for all of Project 1 represented
as a function of elapsed time. In the legend, A, B, C, D, E, F, G and H
represent the number of faults separated by test phase.

 0

Time

T
h
e

n
u
m

b
e
r

o
f

d
e
te

c
te

d
fa

u
lt
s A

B
C
D
E
F

H
G

Fig. 4. Cumulative number of detected faults for all of Project 2 represented
as a function of elapsed time. In the legend, A, B, C, D, E, F, G and H
represent the number of faults separated by test phase.

A. Fitness of model (RQ 1)

We evaluated the fitness of SRGMs in two cases. Case 1
applies SRGM to all the faults in the model simultaneously.
Case 2 separates the faults the into eight test phases, applies
SRGM to each phase, and then sums the results to treat as one
model.

We show the results of Project 1 and 2 in Figs. 5 and 6,
respectively. It is should be noted that these figures do not
indicate actual values because the information is confidential.
The separated faults model (case 2) provides a better fitness
than the simultaneous model (case 1). Table I shows the
residual sum of squares (RSS) ratio for each model.

These values are divided by the RSS value of case 1. There-
fore, the separated model (case 2) for both projects indicates a

 0

T
h
e
 n

u
m

b
e
r 

o
f 
d
e
te

c
te

d
 f
a
u
lt
s

Time

A
B
C
D
E
F

H
G

Fig. 5. Cumulative number of predicted faults by SRGMs for all of Project
1 represented as a function of elapsed time. In the legend, A, B, C, D, E, F,
G and H represent the number of faults separated by test phase.

 0

Time

T
h
e

n
u
m

b
e
r

o
f

d
e
te

c
te

d
fa

u
lt
s A

B
C
D
E
F

H
G

Fig. 6. Cumulative number of predicted faults by SRGMs for all of Project
2 as a function of elapsed time. In the legend, A, B, C, D, E, F, G and H
represent the number of faults separated by test phase.

good fitness because the RSS values of the separated models
(case 2) are smaller than those of the combined models (case
1).

B. Monitoring Predicted Faults (RQ 2)

We monitored the results of SRGMs by applying them
daily to detect unexpected values. Figures 7 and 8 show the
results for monitoring the maximum predicted number of faults
for Project 1 and Project 2, respectively. Figure 7 has two
irregular points when the maximum predicted number of faults
is too large, whereas Fig. 8 has five irregular points when the
maximum predicted number of faults is too large.

We interviewed the project manager about the situations
when the graph indicates an irregular point. In figure 7, the
first irregular point coincides with the time that developers
thought it was difficult to continue on schedule because
several problems remained. The second irregular point is when

TABLE I. COMPARISON OF THE SIMULTANEOUS MODEL
(CASE 1) WITH THE SEPARATED MODEL (CASE 2) USING RSS

RATIO DATASETS.

Case 1 Case 2
Project 1 1.000 0.345
Project 2 1.000 0.190



 0

Time

T
h
e

n
u
m

b
e
r

o
f

d
e
te

c
te

d
fa

u
lt
s A

B
C
D
E
F

H
G

Fig. 7. Cumulative maximum predicted number of faults by SRGMs for all
of Project 1 as a function of elapsed time. In the legend, A, B, C, D, E, F, G
and H represent the number of faults separated by test phase.

 0

Time

T
h
e

n
u
m

b
e
r

o
f

d
e
te

c
te

d
fa

u
lt
s A

B
C
D
E
F

H
G

Fig. 8. Cumulative maximum predicted number of faults by SRGMs for all
of Project 2 as a function of elapsed time. In the legend, A, B, C, D, E, F, G
and H represent the number of faults separated by test phase.

developers tried to reschedule the release plan because several
problems reoccurred.

In figure 8, from the first irregular point to the third, several
problems occurred intermittently. At the fourth irregular point,
several problems reoccurred and developers stopped tests and
restarted other tests. At the fifth irregular point, developers
detected more faults than ever because they refined and created
new test cases.

In the two projects, the irregular points are the same as the
unexpected situations. Hence, the results show that monitoring
the behavior should detect unexpected situations early.

C. Thread to validity

In this paper, we only treat two similar projects from the
same organization. However, other researches have treated sim-
ilar projects in the same organization. Additionally, our results
found unexpected situations in the two projects, which we
assumed are coincidental and are not related to this research.

V. CONCLUSION

We successfully obtained a good fitness model by sepa-
rating faults by test phase and applying SRGM. Moreover, we
found unexpected situations in development by monitoring the

faults and the behavior of the SRGM. These results demon-
strate that if developers and managers monitor the behavior of
the SRGM results from the beginning of development, they
can detect several unexpected situations earlier than ever.

To provide insight to developers and managers who have
trouble with development, we plan to evaluate our method by
applying it to ongoing projects and other datasets belonging
to other domains or organizations.

REFERENCES

[1] A. Goel, “Software reliability models: Assumptions, limitations, and
applicability,” Software Engineering, IEEE Transactions on, vol. SE-
11, no. 12, pp. 1411–1423, Dec 1985.

[2] S. Yamada, M. Ohba, and S. Osaki, “S-shaped reliability growth
modeling for software error detection,”Reliability, IEEE Transactions
on, vol. R-32, no. 5, pp. 475–484, Dec 1983.

[3] S. Yamada, M. Kimura, H. Tanaka, and S. Osaki, “Software reliability
measurement and assessment with stochastic differential equations,”
IEICE transactions on fundamentals of electronics, communications and
computer sciences, vol. 77, no. 1, pp. 109–116, 1994.

[4] S. Yamada, “Recent developments in software reliability modeling and
its applications,” inStochastic Reliability and Maintenance Modeling.
Springer, 2013, pp. 251–284.

[5] X. Cai and M. Lyu, “Software reliability modeling with test cover-
age: Experimentation and measurement with a fault-tolerant software
project,” in Software Reliability, 2007. ISSRE ’07. The 18th IEEE
International Symposium on, Nov 2007, pp. 17–26.

[6] K. Honda, H. Washizaki, and Y. Fukazawa, “A generalized software
reliability model considering uncertainty and dynamics in develop-
ment,” in Product-Focused Software Process Improvement, ser. Lecture
Notes in Computer Science, J. Heidrich, M. Oivo, A. Jedlitschka, and
M. Baldassarre, Eds. Springer Berlin Heidelberg, 2013, vol. 7983, pp.
342–346.

[7] K. Honda, H. Washizaki, and Fukazawa, “Predicting release time based
on generalized software reliability model (gsrm),” inComputer Software
and Applications Conference (COMPSAC), 2014 IEEE 38th Annual.
IEEE, 2014, pp. 604–605.

[8] H. Washizaki, K. Honda, and Fukazawa, “Predicting release time for
open source software based on the generalized software reliability
model,” in Agile Conference (AGILE), 2015, August 2015.

[9] K. Honda, H. Nakai, H. Washizaki, Y. Fukazawa, K. Asoh, K. Taka-
hashi, K. Ogawa, M. Mori, T. Hino, Y. HAYAKAWAet al., “Predicting
time range of development based on generalized software reliability
model,” in 21st Asia-Pacific Software Engineering Conference (APSEC
2014), 2014.

[10] R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson, and F. Torner,
“Evaluating long-term predictive power of standard reliability growth
models on automotive systems,” inSoftware Reliability Engineering
(ISSRE), 2013 IEEE 24th International Symposium on, Nov 2013, pp.
228–237.

[11] “The r project for statistical computing,”
http://www.r-project.org/ .

[12] T. Moser, R. Mordinyi, D. Winkler, and S. Biffl, “Engineering project
management using the engineering cockpit: A collaboration platform
for project managers and engineers,” inIndustrial Informatics (INDIN),
2011 9th IEEE International Conference on, July 2011, pp. 579–584.

[13] V. R. Basili, G. Caldiera, and H. D. Rombach, “The goal question metric
approach,” inEncyclopedia of Software Engineering. Wiley, 1994.

[14] H. Nakai, K. Honda, H. Washizaki, Y. Fukazawa, K. Asoh, K. Taka-
hashi, K. Ogawa, M. Mori, T. Hino, Y. Hayakawa, Y. Tanaka, S. Ya-
mada, and D. Miyazaki, “Initial industrial experience of gqm-based
product-focused project monitoring with trend patterns,” inSoftware
Engineering Conference (APSEC), 2014 21st Asia-Pacific, vol. 2, Dec
2014, pp. 43–46.

[15] M. Ohira, R. Yokomori, M. Sakai, K.-i. Matsumoto, K. Inoue, and
K. Torii, “Empirical project monitor: A tool for mining multiple project
data,” in International Workshop on Mining Software Repositories
(MSR2004). IET, 2004, pp. 42–46.


