
November 25, 2015 12:5 WSPC/INSTRUCTION FILE
FrederikNakstad˙IJSEKE˙Manuscript

International Journal of Software Engineering and Knowledge Engineering
c⃝ World Scientific Publishing Company

Finding and Emulating Keyboard, Mouse, and

Touch Interactions and Gestures while Crawling RIAs

FREDERIK H. NAKSTAD∗, HIRONORI WASHIZAKI†, YOSHIAKI FUKAZAWA‡

Department of Computer Science and Engineering, Waseda University
Tokyo, Japan

∗frederik@fuji.waseda.jp
†washizaki@waseda.jp
‡fukazawa@waseda.jp

Received (Day Month Year)
Revised (Day Month Year)

Accepted (Day Month Year)

Existing techniques for crawling Javascript-heavy Rich Internet Applications tend to ig-
nore user interactions beyond mouse clicking, and therefore often fail to consider potential
mouse, keyboard and touch interactions. We propose a new technique for automatically

finding and exercising such interactions by analyzing and exercising event handlers regis-
tered in the DOM. A basic form of gesture emulation is employed to find states accessible
via swiping and tapping. Testing the tool against 6 well-known gesture libraries and 5

actual RIAs, we find that the technique discovers many states and transitions resulting
from such interactions, and could be useful for cases such as automatic test generation
and error discovery, especially for mobile web applications.

Keywords: crawling; gesture emulation; event handler analysis; RIA.

1. Introduction

Crawling JavaScript-heavy Rich Internet Applications (RIA) has been a hot topic in

recent years, giving us automated tools and methods for extracting state diagrams

for such highly dynamic web applications. These methods have spawned a variety

of applications to automate beneficial tasks such as indexing for search engines [1],

accessibility and usability evaluation [4], automatic test generation [6, 7], regression

testing [8], validation [5], and security testing [3] to mention some.

However, existing crawling techniques tend to ignore user interactions beyond

mouse clicking, and therefore often fail to consider potential mouse, keyboard and

touch interactions. It seems reasonable to hypothesize that these kinds of interac-

tions can be numerous in advanced interactive web applications as well as mobile-

tailored web applications.

1

November 25, 2015 12:5 WSPC/INSTRUCTION FILE
FrederikNakstad˙IJSEKE˙Manuscript

2 Frederik Nakstad, Hironori Washizaki, Yoshiaki Fukazawa

Fig. 1. Gallery with swipe interactions.

2. Motivating Example and Research Questions

As a motivating example, let’s consider a photo gallery component containing an

image and some descriptive text as pictured in Figure 1. In order to load the next

picture and text caption in the gallery, you swipe left or right. These swipe interac-

tions would be implemented by attaching the desired gesture type to a target DOM

element via JavaScript. Since existing crawl techniques do not attempt to execute

such advanced interaction events, the states loaded by performing these swipe ges-

tures would not be found, leaving a good chunk of application functionality and

content unexplored.

We propose a new technique for finding and exercising mouse, keyboard, and

touch interactions when crawling interactive JavaScript-based websites by analyz-

ing and exercising event handlers . Gesture emulation is employed to find states

accessible via swiping and tapping. The research questions we try to answer are (1)

how comprehensively can our technique capture and perform gesture interactions,

(2) how often do various keyboard, mouse, and touch events lead to new states in

modern RIA’s, and which event types are more likely to induce new states, and (3)

what DOM elements are more likely to be targets for interactions leading to new

state transitions?

3. Technique

The technique, as depicted in Figure 2, works by executing a JavaScript module in

each state before any other JavaScript is evaluated. This enables us to override the

various event listener registration APIs of the browser, and thus collect all event

handlers registered by the developer. Once this information is delivered back to

the crawler, it can use it to decide what interactions to try out based on event

handlers registered by the website developer. The technique is implemented as a

set of extensions and modifications to Crawljax [1]. The tool went through two

iterations, the first one using a MITM proxya to intercept HTML content for the

ahttps://mitmproxy.org/

November 25, 2015 12:5 WSPC/INSTRUCTION FILE
FrederikNakstad˙IJSEKE˙Manuscript

Finding and Emulating Keyboard, Mouse, and Touch Interactions and Gestures while Crawling RIAs 3

Fig. 2. Architecture of mobCrawler

Table 1. Gesture emulation.

Interaction Description Fire on

Event
dispatch

Create and dispatch an event to the target element. click, mouse,
key

Mouse swipe Dispatches a series of down, move and up events for mouse. mousedown

Touch swipe Dispatches a series of start, move and end events for mouse. touchstart

Tap Dispatches touchstart and touchend events in rapid succes-

sion.

touchstart

Double tap Two tap gestures in quick succession. touchstart

Tap hold Tap gesture with longer timeout between the touchstart and
touchend events.

touchstart

crawler, and then injecting the script. The second improved version relies on a

modified version of the Phantom.js browserb, where we inject the script after SSL

decryption, but before the page is executed.

Our tool will programmatically construct and dispatch events to the various

target elements according to what event handlers have been registered on them

as outlined in Table 1. For mousedown and touchdown handler types we emulate

various gestures: tap, double-tap, tap-hold, and swipes in different directions. If

these interactions are emulated correctly they will elicit JavaScript code executions

via the event callbacks the developer registered, which in turn may change the state

of the DOM and give us a new state in the state graph.

4. Experiment and Case Study

We tested the tool against the 6 most popular gesture libraries for JavaScript ac-

cording to GitHub. This was done with an experiment where we created a simple

website for each gesture library, and implemented event handlers for gestures listed

in Table 2. Each event handler would trigger a callback introducing a small write

bhttp://phantomjs.org/

November 25, 2015 12:5 WSPC/INSTRUCTION FILE
FrederikNakstad˙IJSEKE˙Manuscript

4 Frederik Nakstad, Hironori Washizaki, Yoshiaki Fukazawa

Table 2. Gesture support.

Library Tap
Double
tap

Tap
hold

Swipe
Left Right Up Down

Hammer.js 3 3 3 3 3 3 3

Quo.js 3 5 5 5 5 5 5

dojox.gesture 3 3 3 3 3 3 3

touchSwipe 3 3 3 3 3 3 3

Touchy 5 5 5 5 5 5 5

jGestures 3 N/A N/A 3 3 3 3

Note: All instances marked 5 were successfully found and emulated if configured
to look for custom event types.

Table 3. Event type distribution for state transitions

k
e
y
b
o
a
r
d

m
o
u
se

sw
ip

e

v
e
r
ti
c
a
l

m
o
u
se

sw
ip

e

h
o
r
iz
o
n
ta

l

m
o
u
se

h
o
v
e
r
s

c
li
c
k

to
u
c
h
sw

ip
e

v
e
r
ti
c
a
l

to
u
c
h
sw

ip
e

h
o
r
iz
o
n
ta

l

to
u
c
h

ta
p
s

C1 0 0 0 42 22 0 0 0

C2 38 19 28 19 60 3 6 11

C3 5 14 16 1 23 44 58 60

C4 3 0 0 0 61 0 1 3

C5 0 26 25 0 100 11 27 19

Table 4. Element type distribution for
state transitions

d
iv

h
tm

l

a

sp
a
n

b
o
d
y

b
u
tt
o
n

in
p
u
t

li

C1 0 0 4 60 0 0 0 0

C2 8 167 16 0 0 0 0 0

C3 175 46 0 0 0 0 0 0

C4 33 0 29 0 4 0 1 1

C5 128 6 35 0 25 14 0 0

to the DOM, so that it would be picked up by the crawler. The crawler was then

run on each website in turn to see if it could detect the gesture registrations and

successfully emulate them. In answer to RQ1 we found that the technique was suc-

cessful in emulating all attempted gestures for all gesture libraries as long as we

instruct mobCrawler to also look for common non-W3C standard event types.

Following up we performed a case study on 5 RIAs: 2 desktop-targeted, and 3

mobile-friendly web applications. For RQ2, as shown in Table 3, we found that there

was a significant number of states and transitions found by non-click interactions.

Most non-”click” interactions were found in the more interactive sites, but even

the simple informational sites had a fair number of such transitions. The desktop

applications had a large number of mouse and keyboard interactions leading to new

states and transitions, while the mobile pages had many touch interactions. Swiping

horizontally was more fruitful than vertical swipes. We witnessed an explosion in

transitions leading to the same state for some sites, and advise careful configuration

of the crawl parameters to fit your purpose. For RQ3, as shown in Table 4, we found

that there was a significant amount of transitions caused by elements of other type

than <button>and <a>. However, the elements used for interaction targets varied

widely from site to site. The most consistent ones, aside from <a>, were <div>,

<html>and <body>. The latter two were often used as targets for interactions

which could take place on the entire surface of the screen.

November 25, 2015 12:5 WSPC/INSTRUCTION FILE
FrederikNakstad˙IJSEKE˙Manuscript

Finding and Emulating Keyboard, Mouse, and Touch Interactions and Gestures while Crawling RIAs 5

5. Related Work

There has been performed previous research utilizing event handlers by tools such

as ARTEMIS [6] and FEEDEX [9]. These tools analyze event handler registrations,

and then use the event handlers to prioritize what crawl action to take, though

they dont attempt gesture emulations and focus on mouse clicking. [10] introduces

a symbolic execution framework for finding security vulnerabilities in web applica-

tions. It utilizes event handler analysis and can perform simple event dispatches,

but does not attempt to emulate gestures. In contrast to our tool, none of these

approaches try to find and emulate complex gestures, and most of them, except

[10], ignore simple event dispatches.

6. Conclusion and Future Work

Our findings indicate the technique could be combined with existing techniques to

improve recall for automatic test generation [2], content indexing, and automatic

evaluations of errors and security [3], especially for mobile web applications with

advanced interaction options. In the future we will perform more case studies with

the improved version of the tool to further clarify the applicability of the technique.

References

[1] A. Mesbah, E. Bozdag, and A. van Deursen, Crawling ajax by inferring user interface
state changes, in ICWE’08, Yorktown Heights, NY, USA, 2008, pp. 122-134.

[2] A. Mesbah and A. van Deursen, Invariant-based automatic testing of ajax user inter-
faces, in ICSE’09, Vancouver, Canada, 2009, pp. 210220.

[3] C. P. Bezemer, A. Mesbah, and A. van Deursen, Automated security testing of web
widget interactions, in ESEC/FSE’09, Amsterdam, Netherlands, 2009, pp. 8190.

[4] F. Ferrucci, F. Sarro, D. Ronca, and S. Abraho, A crawljax based approach to ex-
ploit traditional accessibility evaluation tools for AJAX applications, in Information
technology and innovation trends in organizations, (Springer, 2011), pp. 255-262.

[5] Y. Maezawa, K. Nishiura, H. Washizaki, and S. Honiden, Validating ajax applications
using a delay-based mutation technique, in ASE’14, Vsters, Sweden, 2014, pp. 491-
502.

[6] S. Artziz, J. Dolby, S. H. Jensen, A. Moller, and F. Tip, A framework for automated
testing of javascript web applications, in ICSE’11, Honolulu, HI, USA, 2011, pp.
571-580.

[7] A. Marchetto, P. Tonella, and F. Ricca, State-based testing of ajax web applications,
in ICST’08, Lillehammer, Norway, 2008, pp. 121-130.

[8] D. Roest, A. Mesbah, and A. van Deursen, Regression testing ajax applications:
Coping with dynamism, in ICST’10, Paris, France, 2010, pp. 127-136.

[9] A. M. Fard, and A. Mesbah, Feedback-directed exploration of web applications to
derive test models, in ISSRE’13, Pasadena, CA, USA, 2013, pp. 278-287.

[10] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song, A symbolic
execution framework for javascript, in IEEE S&P’10, Oakland, CA, USA, 2010, pp.
513-528.

