November 25, 2015 12:5 WSPC/INSTRUCTION FILE
rederikNakstad TISEKE Manuscript

International Journal of Software Engineering and Knowledge Engineering
© World Scientific Publishing Company

Finding and Emulating Keyboard, Mouse, and
Touch Interactions and Gestures while Crawling RIAs

FREDERIK H. NAKSTAD} HIRONORI WASHIZAKI! YOSHIAKI FUKAZAWA?

Department of Computer Science and Engineering, Waseda University
Tokyo, Japan
*frederik@fugi.waseda.jp
twashizaki@waseda.jp
Hukazawa@Quaseda.jp

Received (Day Month Year)
Revised (Day Month Year)
Accepted (Day Month Year)

Existing techniques for crawling Javascript-heavy Rich Internet Applications tend to ig-
nore user interactions beyond mouse clicking, and therefore often fail to consider potential
mouse, keyboard and touch interactions. We propose a new technique for automatically
finding and exercising such interactions by analyzing and exercising event handlers regis-
tered in the DOM. A basic form of gesture emulation is employed to find states accessible
via swiping and tapping. Testing the tool against 6 well-known gesture libraries and 5
actual RIAs, we find that the technique discovers many states and transitions resulting
from such interactions, and could be useful for cases such as automatic test generation
and error discovery, especially for mobile web applications.

Keywords: crawling; gesture emulation; event handler analysis; RIA.

1. Introduction

Crawling JavaScript-heavy Rich Internet Applications (RIA) has been a hot topic in
recent years, giving us automated tools and methods for extracting state diagrams
for such highly dynamic web applications. These methods have spawned a variety
of applications to automate beneficial tasks such as indexing for search engines [1],
accessibility and usability evaluation [4], automatic test generation [6, 7], regression
testing [8], validation [5], and security testing [3] to mention some.

However, existing crawling techniques tend to ignore user interactions beyond
mouse clicking, and therefore often fail to consider potential mouse, keyboard and
touch interactions. It seems reasonable to hypothesize that these kinds of interac-
tions can be numerous in advanced interactive web applications as well as mobile-
tailored web applications.

;

November

25, 2015 12:5 WSPC/INSTRUCTION FILE

rederikNakstad TISEKE Manuscript

2 Frederik Nakstad, Hironori Washizaki, Yoshiaki Fukazawa

l1<div id="gallery">

2
3 <label>Mt. Fuji</label>
4</div>

o 1$("#gallery")

S———

== 2 .swipeLeft(function() {

3 // Load new image

4 // and caption via AJAX ...

5});

Fig. 1. Gallery with swipe interactions.

2. Motivating Example and Research Questions

As a motivating example, let’s consider a photo gallery component containing an
image and some descriptive text as pictured in Figure 1. In order to load the next
picture and text caption in the gallery, you swipe left or right. These swipe interac-
tions would be implemented by attaching the desired gesture type to a target DOM
element via JavaScript. Since existing crawl techniques do not attempt to execute
such advanced interaction events, the states loaded by performing these swipe ges-
tures would not be found, leaving a good chunk of application functionality and
content unexplored.

We propose a new technique for finding and exercising mouse, keyboard, and
touch interactions when crawling interactive JavaScript-based websites by analyz-
ing and exercising event handlers . Gesture emulation is employed to find states
accessible via swiping and tapping. The research questions we try to answer are (1)
how comprehensively can our technique capture and perform gesture interactions,
(2) how often do various keyboard, mouse, and touch events lead to new states in
modern RIA’s, and which event types are more likely to induce new states, and (3)
what DOM elements are more likely to be targets for interactions leading to new
state transitions?

3. Technique

The technique, as depicted in Figure 2, works by executing a JavaScript module in
each state before any other JavaScript is evaluated. This enables us to override the
various event listener registration APIs of the browser, and thus collect all event
handlers registered by the developer. Once this information is delivered back to
the crawler, it can use it to decide what interactions to try out based on event
handlers registered by the website developer. The technique is implemented as a
set of extensions and modifications to Crawljax [1]. The tool went through two
iterations, the first one using a MITM proxy?® to intercept HTML content for the

ahttps://mitmproxy.org/

November

25, 2015 12:5 WSPC/INSTRUCTION FILE

L:‘rederikNakstad'IJ SEKE Manuscript

Finding and Emulating Keyboard, Mouse, and Touch Interactions and Gestures while Crawling RIAs

Exercise
candidate
interactions

Instrumented browser

a Phantom.s

Crawljax*

U2FsdGVk

X1+XzsPE <head> click:
<script> [/HTML/...",
/I INJECTED touchstart:
/I SCRIPT [/HTML/...",
</script> HTML/..."]
SSL encrypted e}

content

Custom script injected after
content decryption, but before
page execution in browser

Fig. 2. Architecture of mobCrawler

Table 1. Gesture emulation.

Interaction | Description Fire on

Event Create and dispatch an event to the target element. click, mouse,

dispatch key

Mouse swipe | Dispatches a series of down, move and up events for mouse. mousedown

Touch swipe Dispatches a series of start, move and end events for mouse. | touchstart

Tap Dispatches touchstart and touchend events in rapid succes- | touchstart
sion.

Double tap Two tap gestures in quick succession. touchstart

Tap hold Tap gesture with longer timeout between the touchstart and | touchstart
touchend events.

crawler, and then injecting the script. The second improved version relies on a
modified version of the Phantom.js browser®, where we inject the script after SSL
decryption, but before the page is executed.

Our tool will programmatically construct and dispatch events to the various
target elements according to what event handlers have been registered on them
as outlined in Table 1. For mousedown and touchdown handler types we emulate
various gestures: tap, double-tap, tap-hold, and swipes in different directions. If
these interactions are emulated correctly they will elicit JavaScript code executions
via the event callbacks the developer registered, which in turn may change the state
of the DOM and give us a new state in the state graph.

4. Experiment and Case Study

We tested the tool against the 6 most popular gesture libraries for JavaScript ac-
cording to GitHub. This was done with an experiment where we created a simple
website for each gesture library, and implemented event handlers for gestures listed
in Table 2. Each event handler would trigger a callback introducing a small write

bhttp://phantomjs.org/

3

November

25, 2015 12:5 WSPC/INSTRUCTION FILE

L:‘rederikNakstad'IJ SEKE Manuscript

4 Frederik Nakstad, Hironori Washizaki, Yoshiaki Fukazawa

Table 2. Gesture support.

. Double | Tap Swipe
Library Tap tap hold | Left Right Up Down
Hammer.js v v v v v v v
Quo.js v X X X X X X
dojox.gesture v v v v v v v
touchSwipe v v v v v v 4
Touchy X X X X X X X
jGestures v N/A N/A v v v v

Note: All instances marked X were successfully found and emulated if configured
to look for custom event types.

Table 3. Event type distribution for state transitions Table 4. Element type distribution for

state transitions

v 8- 8% ,, 8. 4%
S FLi5%8 % 223§ *° , z = » § 1
S 85 28288 % 5554 T Z £ « g F 2 &=
2 28 25 8= 5> 23 3 < @ o 2 B
g £= 2 84 s
Cl1|0 0 0 42 | 22 0 0 0 Cl| O 0 4160, 0]0(0]|O0
C2 38| 19 28 19 | 60 3 6 11 C2| 8 |167|16| 0| 0|0 |O0]|O
C3| 5 14 16 1 23 44 58 | 60 C3 (17546 | 0| O0O|O0O]O0O|O]|O
C4| 3 0 0 0 61 0 1 3 C4 | 33 0 (29101 4]0]1]1
C5| 0 26 25 0 100 | 11 27 |19 C5(128| 6 |35 0 |25(|14|0 |0

to the DOM, so that it would be picked up by the crawler. The crawler was then
run on each website in turn to see if it could detect the gesture registrations and
successfully emulate them. In answer to RQ1 we found that the technique was suc-
cessful in emulating all attempted gestures for all gesture libraries as long as we
instruct mobCrawler to also look for common non-W3C standard event types.

Following up we performed a case study on 5 RIAs: 2 desktop-targeted, and 3
mobile-friendly web applications. For RQ2, as shown in Table 3, we found that there
was a significant number of states and transitions found by non-click interactions.
Most non-"click” interactions were found in the more interactive sites, but even
the simple informational sites had a fair number of such transitions. The desktop
applications had a large number of mouse and keyboard interactions leading to new
states and transitions, while the mobile pages had many touch interactions. Swiping
horizontally was more fruitful than vertical swipes. We witnessed an explosion in
transitions leading to the same state for some sites, and advise careful configuration
of the crawl parameters to fit your purpose. For RQ3, as shown in Table 4, we found
that there was a significant amount of transitions caused by elements of other type
than <button>and <a>. However, the elements used for interaction targets varied
widely from site to site. The most consistent ones, aside from <a>, were <div>,
<html>and <body>. The latter two were often used as targets for interactions
which could take place on the entire surface of the screen.

November 25, 2015 12:5 WSPC/INSTRUCTION FILE
rederikNakstad TISEKE Manuscript

Finding and Emulating Keyboard, Mouse, and Touch Interactions and Gestures while Crawling RIAs 5

5. Related Work

There has been performed previous research utilizing event handlers by tools such
as ARTEMIS [6] and FEEDEX [9]. These tools analyze event handler registrations,
and then use the event handlers to prioritize what crawl action to take, though
they dont attempt gesture emulations and focus on mouse clicking. [10] introduces
a symbolic execution framework for finding security vulnerabilities in web applica-
tions. It utilizes event handler analysis and can perform simple event dispatches,
but does not attempt to emulate gestures. In contrast to our tool, none of these
approaches try to find and emulate complex gestures, and most of them, except
[10], ignore simple event dispatches.

6. Conclusion and Future Work

Our findings indicate the technique could be combined with existing techniques to
improve recall for automatic test generation [2], content indexing, and automatic
evaluations of errors and security [3], especially for mobile web applications with
advanced interaction options. In the future we will perform more case studies with
the improved version of the tool to further clarify the applicability of the technique.

References

[1] A. Mesbah, E. Bozdag, and A. van Deursen, Crawling ajax by inferring user interface
state changes, in ICWE’08, Yorktown Heights, NY, USA, 2008, pp. 122-134.

[2] A. Mesbah and A. van Deursen, Invariant-based automatic testing of ajax user inter-
faces, in ICSE’09, Vancouver, Canada, 2009, pp. 210220.

[3] C. P. Bezemer, A. Mesbah, and A. van Deursen, Automated security testing of web
widget interactions, in ESEC/FSE’09, Amsterdam, Netherlands, 2009, pp. 8190.

[4] F. Ferrucci, F. Sarro, D. Ronca, and S. Abraho, A crawljax based approach to ex-
ploit traditional accessibility evaluation tools for AJAX applications, in Information
technology and innovation trends in organizations, (Springer, 2011), pp. 255-262.

[5] Y. Maezawa, K. Nishiura, H. Washizaki, and S. Honiden, Validating ajax applications
using a delay-based mutation technique, in ASE’1/4, Vsters, Sweden, 2014, pp. 491-
502.

[6] S. Artziz, J. Dolby, S. H. Jensen, A. Moller, and F. Tip, A framework for automated
testing of javascript web applications, in ICSE’11, Honolulu, HI, USA, 2011, pp.
571-580.

[7] A. Marchetto, P. Tonella, and F. Ricca, State-based testing of ajax web applications,
in ICST’08, Lillehammer, Norway, 2008, pp. 121-130.

[8] D. Roest, A. Mesbah, and A. van Deursen, Regression testing ajax applications:
Coping with dynamism, in ICST’10, Paris, France, 2010, pp. 127-136.

[9] A. M. Fard, and A. Mesbah, Feedback-directed exploration of web applications to
derive test models, in ISSRE’13, Pasadena, CA, USA, 2013, pp. 278-287.

[10] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song, A symbolic
execution framework for javascript, in IEEE S€P’10, Oakland, CA, USA, 2010, pp.
513-528.

