
A SQuaRE-based Software Quality Evaluation
Framework and its Case Study

Hidenori Nakai∗, Naohiko Tsuda∗, Kiyoshi Honda∗, Hironori Washizaki∗†‡, and Yoshiaki Fukazawa∗
∗Global Software Engineering Laboratory, Dept. Computer Science and Engineering, Waseda University, Tokyo, Japan

Email: {hide-and-seek, 821821}@toki.waseda.jp, khonda@ruri.waseda.jp, {washizaki, fukazawa}@waseda.jp
†National Institute of Informatics, Tokyo, Japan

‡SYSTEM INFORMATION CO.,LTD., Tokyo, Japan

Abstract—Software stakeholders, including developers, man-
agers, and end users, require high quality software products.
Several works have aimed to identify software quality, but
the quality of software products is often not comprehensively,
specifically, or effectively defined because previous approaches
have focused on certain quality aspects. Moreover, the evaluation
results of quality metrics often depend on software stakeholders
so that it is often hard to compare quality evaluation results
across software products. ISO/IEC has tried to define evaluation
methods for the quality of software products and provide
common standards, called the SQuaRE (Systems and software
Quality Requirements and Evaluation) series including ISO/IEC
25022:2016 and ISO/IEC 25023:2016. However, the SQuaRE
series include ambiguous metrics so that it is not always easy to
apply the series to products and compare results. In this paper, we
propose a SQuaRE-based software quality evaluation framework,
which successfully concretized many product metrics and quality
in use metrics originally defined in the SQuaRE series1. Through
a case study targeting a commercial software product, we
confirmed that our framework is concretely applicable to the
software package/service product.

Index Terms—Software quality evaluation, software measure-
ment, software metric

I. INTRODUCTION

Software stakeholders, including developers, managers, and
end users, require high quality software products. Several
works have aimed to identify software quality (e.g., [27] and
[26]), but the quality of software products is not compre-
hensively, specifically, or effectively defined because previous
approaches have focused on certain quality aspects. Therefore,
software project stakeholders are unable to identify and under-
stand all aspects of software quality.

Moreover, issues with definitions are obstacles to control
and understand the quality of software products [31]. Since
the software product quality has a subjective component [3],
the evaluation results of quality metrics depend on software
stakeholders.

On the other hand, ISO/IEC has tried to define evaluation
methods for the quality of software products and provide
common standards, called the Systems and software Quality
Requirements and Evaluation (SQuaRE) series [16] including

1This paper is an extended version of a poster ”Initial Framework for Soft-
ware Quality Evaluation based on ISO/IEC 25022 and ISO/IEC 25023”[28]
presented at The 2016 IEEE International Conference on Software Quality,
Reliability & Security (QRS 2016).

ISO/IEC 25022:2016 [17] and ISO/IEC 25023:2016 [18] . This
series includes a comprehensive quality model [15], software
product quality characteristics, and quality in use characteris-
tics. Additionally, this series includes several metrics for each
quality characteristic.

Measurement issues and ambiguities limit evaluation meth-
ods [13]. Especially, ambiguities in the evaluation methods
make the definition of the software product quality difficult.
[32] indicated that only 28% of companies apply the ISO/IEC
standards to their software products since these standards are
not so practical; the ISO/IEC standards are too general and
have ambiguous inputs, outputs and metrics [13] [1].

More than 70% of companies are applying their own quality
models [32] to their own developments. Additionally, other
quality frameworks such as [36], [37], [38], [39], [40] and
various product metrics such as [35], [30] have been pro-
posed for software quality evaluations. However, organization-
specific non-standard quality frameworks, metrics and models
are hard to be compared since these focus on only the quality
characteristics of interest.

To mitigate this situation, we propose a SQuaRE-based
software quality evaluation framework, which successfully
concretized many product metrics and quality in use metrics
originally defined in the standards ISO/IEC 25022:2016 and
ISO/IEC 25023:2016 in the SQuaRE series.

The contributions of this paper include:
• A SQuaRE-based software quality evaluation frame-

work2.
• A case study to evaluate the usefulness of our framework.
The remainder of this paper is organized as follows. Section

II details our proposed framework. Section III shows a case
study using our framework. Section IV describes related
works. Finally, Section V concludes the paper.

II. PROPOSED FRAMEWORK

Our framework is aimed to reduce ambiguities in metrics as
well as clearly define inputs and outputs for quality metrics.
Our framework supports software development project stake-
holders specify necessary concrete product metrics based on
international standards, evaluate the sufficiency of the quality

2We have a plan to open our framework to the public through our web site
at http://www.washi.cs.waseda.ac.jp/.



Fig. 1. Quality characteristics and number of metrics

(sub-)characteristics based on the metrics, and identify areas
for improvement according to the evaluation results.

Our framework is composed by two parts: “Product Qual-
ity” and “Quality in Use”. The former contains internal and
external product quality characteristics and metrics based on
ISO/IEC 25023:2016, whereas the latter has quality char-
acteristics and metrics of quality in use based on ISO/IEC
25022:2016. The product quality is expected to influence
quality in use so that it is preferable to measure and ensure
both quality.

In relation to PSQ Certification System [8], we selected
and concretized 47 product metrics and 18 quality in use
metrics that are concretely applicable to almost any software
package/service products. These metrics cover more than 50%
of the metrics originally defined in the SQuaRE series. The
number of metrics for each quality characteristic is shown in
Figure 1.

The overview of the procedure for employing our frame-
work is shown in Figure 2. Our framework requires manual
specifications, test specifications and bug information to mea-
sure the product quality. Moreover, our framework requires
information collected via a questionnaire and a user test
to measure quality in use metrics. Finally, entire software
quality is assessed based on the results to clarify what quality
characteristics are sufficient (or not).

A. Product Quality

The product quality indicates the degree of how the re-
quired needs (e.g., software purpose, performance, usability of
product, and easy maintainability) are satisfied. If this quality
is insufficient, the software product may include incidents,
high development or maintenance costs, and violations of user
needs. Therefore, product quality should be identified.

The product quality involves internal/external quality char-
acteristics and sub-characteristics (e.g., one quality character-
istic is Functional Suitability and functional completeness is
one of its sub-characteristics) and metrics based on ISO/IEC

Fig. 2. Framework overview

Fig. 3. Procedure to measure product quality

25023:2016. There are 47 product quality metrics. Some of
these metrics focus on the main functions of the software. The
main functions are must-have capabilities that are described in
catalogs.

Our framework requires information from the following ele-
ments to measure the product quality: manuals, specifications,
design, source code, violations of the coding standard, test
specifications, test results, and bug information. In addition,
thresholds, which are defined based on metrics information
from many domain software products, are needed for an
objective quality interpretation. However, in this research, the
initial thresholds are defined based on the prediction approach
[14] and conventional work. Figure 3 overviews the procedure
to measure the product quality.

The following steps are used to measure the product quality.

1) Define the quality to be considered by project stakehold-
ers.

2) Define the thresholds for the quality metrics using the
proposed framework.

3) List information for the measurement based on select
documents (e.g., manual, specifications, etc.).

4) Measure and evaluate the quality metrics based on
thresholds.



Fig. 4. Procedure to measure the quality in use

For example, “Functional Suitability” indicates whether the
software functions satisfy users’ needs. The lack of Functional
Suitability means that the software does not meet the users’
expectations or needs. One measure of this characteristic is as
follows:

X = 1−A/B

A = Number of functional requirements

not implemented

B = Number of functional requirements

B. Quality in Use

Quality in use indicates the degree that a software product
satisfies a specific user’s needs, effectively, efficiently, and
satisfactorily to achieve a user’s goals and mitigate risks in the
context of use. If this quality is insufficient, users tend to be
dissatisfied with a software product. Because an insufficient
quality in use may reduce the number of users, this metric
should be identified.

Quality in use involves certain quality characteristics and
their sub-characteristics (e.g., the usefulness is one of the
sub-characteristics of the satisfaction), and metrics based on
ISO/IEC 25022:2016. There are 18 metrics for quality in use.

Our framework requires experimental information (i.e., a
user test and a questionnaire) to measure the quality in use.
The user test evaluates the effectiveness, efficiency, and sat-
isfaction. The questionnaire is related to satisfaction, freedom
from risk, and context coverage. It should be noted that the
questionnaire is developed according to [19] [41] and popular
usability measurement scales such as SUS [6], SUMI [20],
and NPS [29].

Figure 4 overviews the procedure to measure quality in use.
The following steps are used to measure the quality in use:
1) Define the software product domain by vendor or third

organization to evaluate the software.
2) Define must-have features in the software domain.
3) Create normal/abnormal tasks based on the must-have

features for the user test and build a questionnaire
considering the must-have features.

4) Prepare a test environment based on the desired system
requirements and distribute the questionnaires to the
actual users.

5) Implement a user test and questionnaire.

III. CASE STUDY

To confirm the usefulness of our framework, we applied it
to a commercial software product.

A. Design and Result

Due to lack of some necessary information about the
software and its development project, the case study measured
30 product metrics and 6 quality in use metrics. All of these
metrics can be measured, suggesting that project stakehold-
ers can adapt these metrics and measurements to their own
projects. The measurement results of most metrics reached
100%, indicating that the quality of the target product is fairly
good.

In addition, a user test has been conducted by the following
way. Firstly, the product’s vendor developed a list of normal
user tasks based on their scenario test. After that, we developed
a set of abnormal tasks based on the normal task list. Finally,
two students belonging to our laboratory conducted the user
test. During the user test, the vendor’s developers helped them
perform the tasks since the subjects were not so familiar with
the target software product. It took several hours to complete
the user test. In the user test, all tasks were completed, but the
results revealed some problems such as “There may be some
potential bugs”.

B. Assessment

The vendor of the target product assessed the evaluation
results objectively, which revealed the following:
Internal Quality How the target of the number of bugs is
defined should be revised and refined.
External Quality The measurement results indicate useful
suggestions to improve the quality such as refining the product
testing process.
Quality in Use The result of the user test can help improve
the quality of software products and user satisfaction.

C. Discussion

Our framework collects metrics information based on doc-
uments such as specifications, test designs, and manuals.
Because the format of these documents depends on the or-
ganization or project, information about some metrics could
not be collected in the case study as it does not exist.

Our framework may be time consuming for project stake-
holders to implement. Because project stakeholders have dif-
ficulty introducing all the metrics and measurements defined
in our framework due to time limitations, some metrics and
measurements should be revised to improve the feasibility of
evaluating quality.

IV. RELATED WORK

There is an SQuaRE-based Software Product Quality Cer-
tification [2] evaluating only maintainability and functional
suitability. In contrast, our research not only examines main-
tainability and functional suitability but also investigates other
quality characteristics of the SQuaRE series.



There is a quality meta model to define specific operational-
ized quality models [33]. However, it could be hard to compare
their measurement/evaluation results to other software prod-
uct’s quality.

[22] presented a scheme to identify a suitable quality model
based on the existing quality model’s purpose (e.g., quality
specification, quality measure, monitoring quality, and quality
improvement), object (e.g., product, process, and resources),
and quality focus (general or specific). Unlike our framework,
this scheme cannot be used as a quality measurement.

There are various quality models and metrics such as HDCE
[21] and COQUALMO [7]; however, these models/approaches
require subjective expert assessments.

V. CONCLUSION AND FUTURE WORK

In this paper, we developed a comprehensive SQuaRE-
based software quality evaluation framework. It consists of 47
quality metrics, 18 quality in use metrics, and corresponding
measurement methods involving documents, user tests and
questionnaires. Our contributions are (1) defining the frame-
work based on international standards ISO/IEC 25022:2016
and ISO/IEC 25023:2016, (2) defining a procedure to im-
plement our framework to assess quality, (3) incorporating
feasible metrics into our framework, and (4) demonstrating
the usefulness of our framework by conducting a case study.

As our future work, we plan to apply our framework to var-
ious domains to confirm its general applicability. During such
application, we will refine the metrics to improve feasibility
and usefulness. Additionally, we will clearly relate the quality
characteristics and metrics by building Goal-Question-Metric
(GQM) [5] models and validating these relationships through
additional case studies. Finally, we will consider possible
quality-specific patterns (such as security patterns [10], [11],
[12], [9], [4]) to utilize our framework by identifying individ-
ual patterns as well as pattern combinations and relationships
[23], [24], [34], [25].

ACKNOWLEDGMENT

This work has been conducted as a part of ”Research Initia-
tive on Advanced Software Engineering in 2015” supported by
Software Reliability Enhancement Center (SEC), Information
Technology Promotion Agency Japan (IPA). Moreover, this
work was partially supported by JSPS KAKENHI Grant
Numbers 25330091 and 16H02804.

REFERENCES

[1] A. Abran et al. Usability meanings and interpretations in ISO standards.
Software Quality Journal, 11(4):325–338, Nov. 2003.

[2] AENOR. Iso 25000 software product quality certification.
http://www.en.aenor.es/aenor/certificacion/ (last visit: 2016 Dec 29).

[3] H. Al-Kilidar et al. The use and usefulness of the ISO/IEC 9126 quality
standard. In ISESE, 2005.

[4] A. Bandara et al. Security patterns: Comparing modeling approaches.
In Software Engineering for Secure Systems, 2010.

[5] V. Basili et al. Goal, question, metric paradigm. In Encycloperia of
Software Engineering, 1994.

[6] J. Brooke. SUS-A quick and dirty usability scale. Usability evaluation
in industry, 189(194):4–7, 1996.

[7] S. Chulani et al. Modeling software defect introduction and removal:
COQUALMO. Technical report, USC-CSSE, 1999.

[8] CSAJ. Psq certification system. http://www.psq-japan.com/english/ (last
visit: 2016 Dec 29).

[9] E. B. Fernandez et al. Using security patterns to build secure systems.
In SPAQu, 2007.

[10] E. B. Fernandez et al. Abstract security patterns. In PLoP, 2008.
[11] E. B. Fernandez et al. Classifying security patterns. In APWeb, 2008.
[12] E. B. Fernandez et al. Modeling misuse patterns. In ARES, 2009.
[13] J. Heidrich et al. Model-based quality management of software develop-

ment projects. In Software Project Management in a Changing World,
pages 125–156. Springer, 2014.

[14] K. Honda et al. A generalized software reliability model considering
uncertainty and dynamics in development. In PROFES. 2013.

[15] ISO/IEC. ISO/IEC 25010:2011 Systems and software engineering -
Systems and software Quality Requirements and Evaluation (SQuaRE)
- System and software quality models. 2011.

[16] ISO/IEC. ISO/IEC 25000:2014 Systems and software engineering -
Systems and software Quality Requirements and Evaluation (SQuaRE)
- Guide to SQuaRE. 2014.

[17] ISO/IEC. ISO/IEC 25022:2016 Systems and software engineering -
Systems and software Quality Requirements and Evaluation (SQuaRE)
- Measurement of quality in use. 2015.

[18] ISO/IEC. ISO/IEC 25023:2016 Systems and software engineering -
Systems and software Quality Requirements and Evaluation (SQuaRE)
- Measurement of system and software product quality. 2015.

[19] J.-Y. Jian et al. Foundations for an empirically determined scale of trust
in automated systems. IJCE, 4(1):53–71, 2010.

[20] J. Kirakowski et al. SUMI: the software usability measurement inven-
tory. British Journal of Educational Technology, 24(3):210–212, 1993.

[21] M. Kläs et al. Managing software quality through a hybrid defect content
and effectiveness model. In ESEM ’08, pages 321–323. ACM, 2008.

[22] M. Kläs et al. CQML scheme: A classification scheme for comprehen-
sive quality model landscapes. In SEAA, pages 243–250, 2009.

[23] A. Kubo et al. Analyzing relations among software patterns based on
document similarity. In ITCC, pages 298–303, 2005.

[24] A. Kubo et al. Extracting relations among embedded software design
patterns. Journal of Integrated Design and Process Science, 9(3), 2005.

[25] A. Kubo et al. Extracting relations among security patterns. In SPAQu,
pages 1–6, 2007.

[26] J. Münch et al. Software project control centers: concepts and ap-
proaches. Journal of Systems and Software, 70(1):3–19, 2004.

[27] H. Nakai et al. Continuous product-focused project monitoring with
trend patterns and GQM. In APSEC ’14, volume 2, pages 69–74, 2014.

[28] H. Nakai et al. Initial framework for software quality evaluation based
on iso/iec 25022 and iso/iec 25023. In QRS, Poster, 2016.

[29] F. F. Reichheld. The one number you need to grow. Harvard business
review, 81(12):46–55, 2003.

[30] K. Sakamoto et al. Open code coverage framework: A consistent
and flexible framework for measuring test coverage supporting multiple
programming languages. In QSIC, pages 262–269, 2010.

[31] A. Trendowicz et al. Model-based product quality evaluation with multi-
criteria decision analysis. CoRR, abs/1401.1913, 2014.

[32] S. Wagner et al. Software quality models in practice - survey results-.
https://mediatum.ub.tum.de/doc/1110601/1110601.pdf, 2010.

[33] S. Wagner et al. The quamoco product quality modelling and assessment
approach. In ICSE ’12, pages 1133–1142, 2012.

[34] H. Washizaki et al. Relation analysis among patterns on software
development process. In PROFES, pages 299–313, 2005.

[35] H. Washizaki et al. A coupling-based complexity metric for remote
component-based software systems toward maintainability estimation.
In APSEC, pages 79–86, 2006.

[36] H. Washizaki et al. Experiments on quality evaluation of embedded
software in japan robot software design contest. In ICSE, 2006.

[37] H. Washizaki et al. A framework for measuring and evaluating program
source code quality. In PROFES, pages 284–299, 2007.

[38] H. Washizaki et al. Quality evaluation of embedded software in robot
software design contest. Progress in Informatics, (4), 2007.

[39] H. Washizaki et al. A metrics suite for measuring quality characteristics
of javabeans components. In PROFES, pages 45–60, 2008.

[40] H. Washizaki et al. Reusability metrics for program source code written
in C language and their evaluation. In PROFES, pages 89–103, 2012.

[41] D. Watson et al. Development and validation of brief measures of
positive and negative affect: the PANAS scales. JPSP, 54(6), 1988.


