Pairwise Coverage-based Testing with Selected
Elements in a Query for Database Applications

Koji Tsumura, Hironori Washizaki, Yoshiaki Fukazawa Keishi Oshima, Ryota Mibe
dept. Computer Science Hitachi, Ltd., Research & Development Group, Center
Waseda University for Technology Innovation - Systems Engineering
Tokyo, Japan Kanagawa, Japan
kojisuke_awesome@asagi.waseda.jp keishi.oshima.rj@hitachi.com

Abstract—Because program behaviors of database applications To detect bugs due to a lack of conditions, we propose
depend on the data used, code coverages do not effectively tesplain Pairwise Coverage Testing (PPCT) and Selected Pairwise
database applications. Additionally, test coverages for database Coverage Testing (SPCT), which are new testing methods for

applications that focus on predicates in Structured Query Lan- .2 . . .
guage (SQL) queries are not useful if the necessary predicates ared""tab"jlse applications using Plain Pairwise Coverage (PPC)

omitted. In this paper, we present two new database applications and Selected Pairwise Coverage (SPC), respectively, for SQL
using Plain Pairwise Coverage (PPC) and Selected Pairwise queries. Pairwise testing [10] is a Combinatorial Test Design
Coverage (SPC) for SQL queries called Plain Pairwise Coverage technique in which two parameters and their test values are
Testing (PPCT) and Selected Pairwise Coverage Testing (SPCT),taken as inputs to test all combinations of two parameters’

respectively. These coverages are based on pairwise testin . .
coverage, which employs selected elements in the SQL SELECTq’alueS' In PPC, all COLUMNSs with parameters in the TABLES

query as parameters. We also implement a coverage calculation in the select query are used as the parameters, and the test
tool and conduct case studies on two open source softwarevalues are set to verify if all possible combinations of the

systems. PPCT and SPCT can detect many bugs, which aretwo parameters’ values appear in the query results. In SPC,

not detected by existing test methods based on predicates inCOLUMNs in the SELECT query are used as the parameters
the query. Furthermore, the case study suggests that SPCT can and all their test values are set to verify if all possible '
detect bugs more efficiently than PPCT and the costs of SPCT p

can be further reduced by ignoring records filtered out by the COmbinations of the two parameters’ values appear in the query

conditions of the query. results. Furthermore, SPC focuses on the WHERE clauses to
Index Terms—combinatorial testing; database testing; cover- remove combinations that cannot be obtained by the query.
age; test data This study aims to address the following Research Ques-
tions:
|. INTRODUCTION RQ1 Can PPCT and SPCT detect bugs that existing testing

method cannot?

Testing database applications using components basegeQ? How many records are needed to reach 100% PPC and
database management systems is difficult because the €x- gp coverage?

ecution path and behaviors depend on the database state. o
Although some code coverages (e.g., statement coveragelC €valuate the applicability of PPCT and SPCT, we use a

branch coverage, etc. [1][2]) and testing methods automaticaf§se study where PPCT and SPCT are applied to two open
generate tests, prioritize test cases, and localize bugs base§®@Hce software systems [11] [12]. Each open source software
code coverage [3][4][5][6], they cannot detect bugs due to ti§¥Stem has about 400KLOC and interacts with about 100
records in the databases because data variations in the reckta§s and 1000 columns. Because they have bug management
are not considered. systems, we employ their issues as target bugs. In our case
Most applications maintain data using a Relational Databad¥dy: PPCT and SPCT detects 61 of the 89 bugs that existing

Management System (RDBMS) and a Structured Query L giethod cannot. In addition, the case study results suggest that

guage (SQL) query to manage the contained data. solfjRoring records not obtained by the query can further reduce

coverage and test methods consider data variations with SEfSts- _ o

executed in the applications [7][8][9], but they focus on the This paper makes the followings contributions:

condition predicates in the query such as in the JOIN or. PPC and SPC, which are new record coverages that apply
WHERE clauses. These methods can detect bugs caused by pairwise testing coverage using selected elements in a
conditional mistakes in the queries [e.g., misplaced logical query, are proposed.

operators (AND, OR) or mistakes of conditional inversion]. « A tool to calculate PPC and SPC is implemented.
However, they cannot detect bugs due to the lack of conditionss PPCT and SPCT, which are new test methods for database
such as an omission of a necessary condition in the SQL query applications using PPC and SPC, respectively, are pro-
or in the IF statement in the program code. posed.

o PPCT and SPCT are applied to two actual products. TABLE |

« PPCT and SPCT can detect 68.54(%) of bugs that existing DATABASE SCHEMA OF THE MOTIVATING EXAMPLE
testing method cannot. Tableitemn
o SPCT can detect bugs more efficiently than PPCT by Attribute | Type | Constraint
ignoring redundant combinations. id Int Primary Key
. . . . category | String Not null
The remainder of the paper is organized as follows. Section voided Bool | € ftrue, false}
Il provides background information and a motivating example. price Int Not null
Section Il describes PPCT, SPCT, and our tool to calculate created_at| Date Not null
updated_at| Date Not null

PPC and SPC. Sections IV and V present our case study
and results, respectively. Section VI discusses related works.
Finally, Section VII contains our conclusion and future works.

/* Calculate a total price of ‘unvoided’ items */
public sumPrice(String category) {

Il. BACKGROUND

Table | shows the schema, while Figure 1 shows the code
and query of our motivating example. Every record in the
Tableitem , which indicates whether the record is alive or not, ¢ It voldec /
has the columrvoided . The methodsumPrice(String example, adding IF statement if ('iisVoided()

’ . . : : 9 price += i.getPrice();
category) calculates the total price of thenvoided items. 10|}
This code finds items by category (Line 4) and sums up their 11| return price;
prices (Line 6-10). Because the code sums only ‘unvoided’ 12 [}

for (Itemi : items) {
// Sum up prices of ‘unvoided' items

1
2
3
4
5] intprice = 0;
6
7
8 // Bug!!! We need filtered out 'voided’ items, for

item’s prices, ‘voided’ items in the query must be filtered - p T
. , . . /* Query executed by "getltems(category)” */
out. However, ‘voided’ items are not filtered because there SELECT
is neither WHERE clause in the query nor an IF statement in id, category, voided, price <=
the code. Thus, records must be prepared according to specific FROM item
criteria to test this code. WHERE category = 'food,

A. Testing with Code Coverage Fig. 1. Code and query of the motivating example

Consider a test that uses code coverage (e.g., state-

ment coverage). In the motivating example, we onl{. Pairwise Testing

need sumPrice(“food”) for the item record whose Combinatorial testing can detect bugs due to parameter

category = ‘food’ to achieve 100% statement coveragénteractions in the software being tested with a covering array

However, this method cannot detect the abovementioned gt suite generated by an algorithm. Pairwise testing is a

with a record whoseategory = ‘food’ AND voided combinatorial testing technique in which two parameters and

= false even though the statement coverage is 100%. all their test values are used as inputs to test all possible
combinations. If only one or two conditions exist, more than

B. Testing with Predicate Coverage of SQL 70% of bugs can be detected [13]. Because pairwise-generated
test suites are smaller than exhaustive ones and effectively find

Some studies test database applications with SQL [7][8][§kfects, many tools exist to generate pairwise test suites [14].
by focusing on the predicates of SQL such as conditions in thery (est database applications with a pairwise testing tech-

WHERE clause and the integrity constraints of the databasge, the parameters are (tables or columns), candidate val-
schema. These criteria can detect conditional mistakes in ﬁb”s and presence of constraints all must be consider.

query because they verify whether record variations can be

covered in terms of the conditions. However, they cannot I11. PAIRWISE COVERAGE-BASED TESTING
detect bug in t_h_e motivating example because it is due to theppCT and SPCT are new test methods for database appli-
lack of a condition. cations that focus on the variety of database records used in

Consider a code test using the “Full Predicate Covetesting. To reduce the number of tested combinations, we use
age”(FPC) proposed by Tuya et al. [8]. This coverage focusgsairwise testing technique.
on the conditions of the JOIN clause and the WHERE clause]
in the query to evaluate the MC/DC coverage of the querd; OVerview
For the motivating example, FPC focuses on the conditionFigure 2 overviews PPCT and SPCT. The target of PPCT
WHERE category = ‘food’ . To achieve 100% coverage,and SPCT is the database used in the application being
FPC requires records whosmtegory = ‘food’ and tested. Three inputs are required: the target database for the
category # ‘food’ . However, even with 100% coverage coverage measurement, a test case to extract the SQL SELECT
it cannot detect bugs with recordsided = false . query, and the test criteria. The last one is retrieved from the

requirement documents, database schema definitions, and the
tendency of the records in the actual database. PPCT uses PPC
(plain pairwise coverage), while SPCT uses SPC (selected
pairwise coverage) for a query. PPC and SPC generate the
coverage criteria using a pairwise testing technique which uses
columns from the query as parameters and equivalence classes
of columns as candidate values. The query results are used to
verify which coverage criteria are satisfied. Both PPCT and
SPCT involve six steps. In our coverage measurement tool,
steps 3 - 5 are automatically implemented.

1) Execute a test case: r
Testers retrieve the desired SQL SELECT query to measure '
the coverage from DBMS query logs or application logs. !

2) Set the candidate equivalence classes of the columns in !
the database: |

|
1
1
1
1
1
1
1

Test
Criteria

(2)Set the
(L)Execute candidate
atest case equivalence
classes of the
columns

Equivalence
Classes
of the Columns

(4)Generate
the coverage
criteria

(3)Execute a
query

Testers can set the following equivalent classes based on tH ©update the

database

type of the column:

(5)Measure
the coverage

A

Bool
Testers can set ‘true’ and ‘false’ as candidate values. /—*\
String Coverage
Testers can set what to measure in a regular expres- | e ent Conducted
H 1 results automatically by our
sion manner. b ——— tool.

Boundary Value
Testers can set the range of the values they want to
measure with comparison operators (i<,, #, >,
>, <, or<)
3) Execute a query: q represents a SQL SELECT query obtained by step 1
Our tool executes the SQL SELECT query obtained by stép the PPCT/SPCT overview. It;(i = 1,2,---) repre-
1 to the database in the initial input and collects the quep@nts the parameter column used in pairwise testing, then
results. C (the set of parameter columns) is defined @ =
4) Generate the coverage criteria: {c1,¢2,---}. For the example in Figure 3, the schema of

Pairwise testing is used as an element technology to genefiife tableitem is shown in Table I. Because PPC focus on
the coverage criteria. Our tool generates the coverage crité?*l.BCOLUMNS in TABLES referred in the query, C' =
using the equivalence classes of the columns created in stdf category, voided, price, created_at,updated_at}.

2 and the SELECT query in step 3. Details of this step areLet us refer to the equivalence classes of columns as the user
described in the next subsection. definition obtained by step 2. W;(i = 1,2,---) represents
5) Measure the coverage: a column in the user definition, theb (the set of columns

Our tool measures the coverage using the query results in dfgghe user definition) is defined a8 = {di,dz,---}. In

3 and the coverage criteria in step 4. Details of this step ar&dure 3.0 = {category, voided, created_at}. In the user
described in the next subsection. definition, if eq;x(k = 1,2,---) represents an equivalence

6) Update the database: class of columnd;, then E;; (the set of equivalence classes

According to the coverage measurement results in stepoé,?lumnﬁj){ls def}nid ?SEdj ={eq;1,€4,2,-- - }. In Figure
records are inserted, updated, and deleted in the database’’ ~voided = 1/7UC, JalsC.

Steps 3 - 6 are repeated to prepare an effective database SEP r each columm; € C the set of possmlg V"?"“e.s of is
defined as a set of equivalence clasBes which is given by

Fig. 2. PPCT/SPCT overview

for testing. :
g the following formula:
B. Our Record Coverages
g B - Ed]. (Ci eDNe = d7) 1
In this subsection, we propose our record coverages to ¢ U.. (otherwise) (1)

test the database applications used in steps 4 and 5 in the
PPCT/SPCT overview. Figure 3 an example of the flow for /.. in formula (1) means an equivalence class that includes
steps 4 and 5 using the motivating example in Section Il. any possible value for columg. In Figure 3, the columid

1) Plain Pairwise Coverage (PPC): is not in D. Therefore,E;q = U;4. Because the columiul
In PPC, we focus on the all COLUMNSs with TABLEs in theis an integer typel/;s = {z|x € Z}. Between columns;
query. andc; € C, the set of combinations of possible values to be

testedP;; is defined by the following formula (where> j
andN = |C)

P’L] — Ucl N
XUegy X Eoy x Ugyy X -+ (2)
XUe_y X By, X Ueiy X -+ - X Uey

Then the set of all possible combinations with at least two
parameters to be testddlis defined by the following formula
(whereN = |C)

P = (U U Py) | UL Eey) 3)

P for the flow example is shown as the coverage criteria in
Figure 3.

If the set of the parameter pairs appearing in the results
obtained in step 3 is referred to apeared(P), then the
coverageCovppc is defined as

| Appeared(P)|
|P|

In the coverage measurement results in Figure 3, a check
(cross) indicates that the pair does (does not) appear in the
records. In this example, step 3 gives two records, but only
three combinations,(froided, category) = (false, ‘food'),
(voided) (false), (category) = (‘food’)} appear.
Hence, Covppe = 3/18 = 16.67(%). However, in this
example, the parameter combinatiGroided, category) =
(false, ‘clothes’) cannot appear in the records because it is fil-
tered out by the WHERE conditiocategory = ‘food’
Furthermore, parameter combinations concerned with the col-
umncreated_at will not appear in the records because the
column is not selected by the query. Therefore, PPC cannot
reach 100 % and PPC is not effective in some cases.

2) Selected Pairwise Coverage (SPOPPC focuses not
only on the parameter combinations obtained by the query,
but also the parameter combinations not obtained. In con-
trast, selected pairwise coverage (SPC) focuses on pa-
rameter combinations that can be obtained by the query
to cover them efficiently. SPC regards the set of all
COLUMNSs selected in the query as C. In Figure 3,

C = {id, category, voided, price}. The definitions off,,,
P;;, and P are the same as those of PPC.

To ignore parameter combinations not obtained ¢ghyP
must be filtered. LetV be the set of equivalence classes of
columns satisfying the conditions i In Figure 3, W =
{Ecategory = {‘food'}}. Psatisficd, Which is the parameter
combinations that can be obtained fyis defined as the set
calculated by the algorithm in Figure 4. The dotted lines in
Figure 3 show the set of combinations B,.is rics. The set
of pairs appearing in the results obtained by step 3 is referred
to as Appeared(Psatis fiea)- Finally, the coverag€ovspc is
defined as

CO’UPPC = X 100(%)

|Appea/r6d(Psatisfied)|
|Rs‘atisfied|
In Figure 3,Covspc = 3/5 = 60(%).

COUSPC = X 100(%)

SELECT query (by Step 1)

Equivalence Classes (by Step 2)

SELECT Table | Column | Equivalence Classes
Lci;i;aet;g;r:g’e voided true, false
FR_OM item category food’, ‘clothes’
item <'2015-12-01,
WHERE created_at 5=2015-12-01"
category = ‘food’;
' Step 4
Coverage Criterion
1 P
1 Single : : category created_at
1 A T
Pair '2015- | <='2015-
1 < true 11 . D 9 2
H % u : | food Iv:Io'(hes 12-01" 12-01"
: S false | : 5| e :
I g ‘food" 12 T
u_ ;;,_ 11| & | false |
] ’cIth 4 2 ~fosd™ —==1T
< es g
>'201 g ‘clothes’
Q 5-12-
54 01’
o
= <=20
= 15-
12-01' Step 5 Query results (by Step 3)
P id | category | voided | price
€= === 5 ‘food’ false | 100
9 ‘food’ false | 250
Coverage Measurement Results
|mm e m — = — = e Y T Y T
1 Single : : category created_at
1 Pair r 2015- =2015-
13 true x : : ‘food’ :‘clothes' >1§0§15, 1;31?
1l a . a
@ 1
: o false | v Jiy S| true x : x x x
) X LI (=%
:_ _%_ _ food 1y 3| false v : x x x
g ’cIth " 1 TE' “food =T N N
es @
«Q
>201 S ‘clothes’ x x
% 5-12- x
% 0 3SPC only focuses
o <=20 on combinations
= 15- x surrounded by
12-01 dotted line.

Fig. 3. Example of the flow in steps 4 and 5

}
}
}

}
}

}

Psatisfied =0
for (P;; in P) {
for (p;j in P;j) {
Psatisfiea = Psatisfiea Y Pij

for (Ep, in P) {
for (ep,, in Ep,) {

if (e, N W 1= 0) {

Psatisfied = Psatisfied Uep,

Fig. 4. Algorithm of Pyyis ficd

C. Testing with our record coverage

J

Next, we tested the motivating example mentioned in Sec- Tssue
tion 1 with our record coverage. Ma;;g;:e“‘ Query Logs

Figure 3 shows the parameter combinations in PPC. Among
them, a bug is found when callingumPrice(“food”)

|

with the record wherévoided, category) = (true, ‘ food’) (1)Systematic
The necessary parameter combinations in SPC are also ﬁ“:r"gugs
shown in Figure 3. Similar to PPC, a bug is detected
when calling sumPrice(“food”) with the record where
(voided, category) = (true, food’)
Systematicall (3)Reproduce (4)/;na|yze (5)Calculate
IV. CASE STUDY y Filtered bug scenarios ug costs

Bugs detectability

We carried out a case study, targeti®penMRJ11] and
Broadleaf Commercf2]. These targets were chosen because:

(1) They use SQL queries to manage the data in their
databases.

(2) They have real bugs, which are individually managed
using a tracking system.

(3) They have a sufficient number of tables and columns
to evaluate RQ2.

|

(2)Manually
filter bugs

Results

Results
(Cost)

Manually
Filtered Bugs

(Bug
Detectability)

A. Case Study Overview

OpenMRSs an open source medical record system platform
for developing countries. We used tbpenmrs-corenodule, Fig. 5. Overview of the case study
which is a core module 0OpenMRSthat has api and web
application codes as the targeBroadleaf Commercés an
open source e-commerce platform. We used Breadleaf- ~ 2) Manually filter bugs:
Commercemodule, which is a core module droadleaf Next issues not related with bugs due to the records in
Commerce Both are written in Ja@! and interact with the database and not detected by code coverage are manu-
approximately 100 tables in the database. We 0dg8QLR)? ally filtered. Unrelated issues include problems in setting up
(Ver 14.14 Distrib 5.5.27, for Win32) as the RDBMS. Theoftware, problems generated by Continuous Integration (Cl)
case study used four versions@penMRSand one version of t00Is, etc.
Broadleaf Commercéor the control systenGit [15]. Figure 3) Reproduce bugs scenarios:
5 overviews of the case study, which can be divided into fiieach bug is reproduced by conducting its scenarios in order to
steps: obtain its query log. Scenarios are determined by inspecting
1) Systematically filter bugs: the discussion, activities, and committed files in their issue
Issues are filtered by conditio@penMRSmanages the bugs pages.
and features to be implemented in the future BRA [16], 4) Analyze bug detectability:

which is an issue management system. Initially, issues are flach pug is then detected by three different methods: Full
tered by the condition “Project=TRUNK AND IssueType=Bugedicate Coverage Testing (FPCT) based on full predicate
AND Status=Closed". The condition *Project=TRUNK" re-coyerage [8] (Section II), PPC Testing (PPCT) based on PPC
moves bugs not related witbpenmrs-core If an issue is (section Ill), and SPC Testing (SPCT) based on SPC (Section
closed, the cause of the bug can be determined by inspectifi) To evaluate whether the testing methods can detect the
the discussion and activities of the issue. Next issues #8g, the procedure to execute each method involves three
extracted by the committed files with at least one file relat%qeps_ First, which records cause the bug (some columns
to database access. Service classes to execute SQL to offg{e certain values, etc.) are determined by inspecting the
records, controller classes to process the records obtaipgsbyssion, activities, and committed files in the issue. Second,
through service classes, and their test classes are assumegddgrds are prepared based on the query log obtained by the
be related to database access. Becdireadleaf Commerce reproduction of bug scenarios so that each method achieved
manages the bugs and features to be implemented in), coverage. Finally, the applicability of testing method
future by Git issues page, issues are also filtered by the verified. If a testing method identifies at least one record
condition “label:type-bug is=closed”. Next issues are extractggym the first step, it is deemed as appropriate. The coverage
by committed files as well a®penMRSAIl of these files can measurement tool depends on the testing method. For FPCT,
interact with the database directly or indirectly. SQLFpg a full predicate coverage rules generation tool to test
LJava is a registered trademark of Oracle and/or its affiliates. SQL database queries [17], is used. Our tools mentioned in
2MySQL is a registered trademark of Oracle and/or its affiliates. Section Ill are used for PPCT and SPCT. The equivalence

TABLE Il TABLE IV

CASE STUDY TARGET SUMMARY RESULTS OFBUG DETECTABILITY ANALYSIS
[Target [Version] LOC [Tables| Columns | Release Datel Detectability for Each Method Number of Bugs .
18 [416446] 95 945 Jun., 2011 OpenMRS (B:foa eaf | Total
1.9 460725 102 1084 Jun., 2012 ommerc
OpenMRS — 15— 77569101 oa Nov_—2014 FPCT] PPCT] _ SPCT 18] 19] 1.10] 111 4.0
T11 | 500015| 99 1101 Feb., 2015 X X j (2) 105 g g g 207
X X
gfgﬂ‘;’:‘ée 40 | 385369 183 1033 | Apr, 2015 ~ 7 ~ o1 T 0 o o T
X v v 16 34 3 5 3 61
v X X 0| 4| 2 0 0 6
v X 7 0| 0] O 0 0 0
TRANSITION O-II;ATBi-iLEENILIJIMBER OFBuUGS Y v X 2 3 0 1 0 6
% % 7 0] 6| 2 0 3 11
Total 20 [63] 9 | 11 9 112
Target
Step OpenMRS | Broadleaf Commerce
I8 19 [L.10] 111 20
Initial 453 | 720 | 424 | 379 125 TABLE V
After step 1| 61 94 12 29 39 RESULTS OF THECOST CALCULATION
Afterstep2] 20 | 63 9 = 9 [Number of Records | Cost Ratio (%)
. 0
‘ Software | Versions et ppcT | SPCT [SPCTIFPCT] SPCT/PPCT]
18 86 | 288 | 259 301.16 89.93
: 1.9 305 873 711 233.11 81.44
classes pf. golumns are rleeded from step 4 (Section IIl). FQropenMrRs|—75 e A 1073 9135
user definitions, the equivalence classes for each column are TII 50 | 149 | 145 290.00 97.32
set based on the type of column. For a number-type column2aea’ [4o | oo | 137 | 137 | 15222 100.00
(e.g., integer, double, float), ‘any values in the range for the Total 619 | 1643 | 1437 232.15 87.46

column’ is set as an equivalence class. For a date-type column

(e.g., date, datetime), ‘past’ and ‘future’, which mean past or

future from the present time, respectively, are set. A strinflumber of Recordscontain the number of records needed

type column (e.g., char, string) is set as either an empty strifgyréach 100% coverage. The last two colum@sst Ratio

or a not empty string. Notice that ‘NULL is added as agontain the ratio of SPCT to other testing methods.

equivalence class if the column allowes NULL values.
5) Calculate costs:

Finally, the cost of each testing method is calculated. THe RQ1: Can SPCT detect bugs that existing testing method

number of records to reach 100% coverage is regarded cagnot?

the cost of the testing method. As mentioned in Section occording to the seventh row in Table IV, SPCT detected
IIl, PPC cannot reach 100% because of redundant paramefgrhygs that FPCT did not. Furthermore, neither FPCT nor
combinations. Therefore, we regard the number of recordspcT detected” + 1 = 28 bugs (the fourth and sixth rows in
where all parameter combinations including the redundapipie |v). In total, SPCT detectesll /(61 + 28) = 68.54(%)
ones appear, as the cost of PPCT. The generation t00lspfqhe bugs that FPCT could not. Furthermore, according to
reach 100% coverage vary by method. For FPEQLFPCIS the sixth row, PPCT detected one more bug than FPCT.
use, wherea®ICT [14], which is the test generation tool by on the other hand, according to the eighth row, FPCT
pairwise testing with the user definitions, is used for PPCfetected six bugs that PPCT and SPCT could not. Furthermore,
and SPCT. only ten of the bugs were detected by all three methods. There-
fore, our proposed testing methods and FPCT are orthogonal,

Table Il shows the LOC, number of tables and columns thahd should be used in combination to detect more bugs.
each version of software interacts with, and the release datehe types of bugs detected depend on the detectability
of each version. Table Il shows the number of bugs at eaphtterns. It should be noted that because PPCT involves SPCT,
step. it can detect the same bugs as SCPT. We observed six different

patterns with actual issues.
B. Case Study Results 1) Not detected by any of the testing methods:

Table IV shows the results of the bug detectability for eachhe bugs in this pattern are not detected by any of the
testing method. The first three columns undietectability testing methods mainly because the records causing a bug
for Each Methoddenote the bug patterns. A check (crossyre obtained by multiple queries but each method focuses
indicates that the test method can (cannot) detect the bog.one query. This pattern requires that multiple queries be
The fourth through eighth columns denote the number of budstected simultaneously. Figure 6 shows the actual queries
for each version oOpenMRSand Broadleaf Commercdy of the issue ‘TRUNK-4437’, which is an ID of the issue
pattern. The last column contains the total number of bugs foir OpenMRS The tableorders is related with the table
each pattern. Table V shows the cost of each testing methddug by the columndrug_inventory id as both have
The first and second columns indicate the versio@pénMRS the columnconcept_id . The module causes a bug when it
and Broadleaf CommerceThe third through fifth columns, is executed with records whoseders.concept_id #*

V. DISCUSSION

SELECT SELECT SELECT ... FROM drug this
INNER JOIN concept conceptl ON ...
order.concept_id, drug.concept_id,
) . INNER JOIN concept_name names2
orderdrug_inventory_id, | | FROM drug drug ON conceptl.concept_id = names2.concept_id
LEFT OUTER JOIN WHERE
FROM orders order . .
LEFT OUTER JOIN WHERE this-retired = 0 AND ANy
. . // The following logical operator should not be ‘AND
// 3 is order.drug_inventory_id obtained but ‘OR’ 11
WHERE by the left query !! ut o o
order.order_id = 1; drug.drug_id = 3; (L%WNER(thls.name) LIKE asa%
LOWER(names2.name LIKE asa%));
Fig. 6. Actual queries of the issue (TRUNK-4437) Fig. 8. Actual query of the issue (TRUNK-4530)
SELECT
COUNT(DISTINCT this.provider.id) SELECT SELECT .
FROM provider this . answers.concept_id,
this.retired, answers.answer_concept,
LEFT OUTER JOIN // We should use answer_condept,
FROM drug this not concept_id !!
WHERE WHERE
// Tthis.retired=0] was necessary here.!! this.name LIKE %NYQUIL% FROM
// [this.retired = 0] was concept_answer answers
necessary here !! WHERE
ORDERBY ...; answers0_.concept_id IN (...)
ORDERBY ...;

Fig. 7. Actual query of the issue (TRUNK-3339)
Fig. 9. Actual queries of the issues (TRUNK-4116, TRUNK-3620)

orders.drug.concept_id . In Figure 6, a bug is detected

whenorder.concept_id obtained by the left query is not) , .
the same adrug.concept_id obtained by the right query. & bug because it can detect misplaced logical operators and

However, such bugs are not detected because these valueS@pditional inversion mistakes in the query, whereas PPCT
obtained separately. A similar result occurs for the issue ‘129&1d SPCT cannot.
of Broadleaf Commerce 4) Only detected by PPCT and SPCT:

2) Only detected by PPCT: The bugs in this pattern are divided into two types. The first is
The bugs in this pattern are detected only by PPCT due maintyissing predicates’, which is due to two reasons; the columns
to two reasons. First, some of the necessary predicates wh®se values of records cause the bug are selected in the query
omitted in the query. Second, the cause is something otliersome of the necessary predicates are omitted in the query.
than the value of the record (e.g., the number of record3he left side query in Figure 9 shows an actual query with
Figure 7 shows an actual query with the issue ‘TRUNKthe issue ‘TRUNK-4116'. Although this query is supposed
3339'. Although this query is supposed to return the numbey return drug records whosename LIKE %NYQUIL%
of provider records obtained by the condition, it returns théut it returnsnot-retired drug records whosemame LIKE
number ofnot-retiredprovider records. The module cause6NYQUIL%The module causes a bug when it is executed with
a bug when it is executed wittetired provider records. retireddrug records whose nameame LIKE %NYQUIL%
Therefore, an additional conditiothis.retired = 0 "is Therefore, the additional conditiorthis.retired = 0
necessary. FPCT cannot detect such a bug. Furthermore, thisecessary. FPCT cannot detect such a bug. Both PPCTand

guery only selects the colunprovider_id . SPCT cannot SPCT can because the former selects the wlg , while the
detect this bug because the query does not select the coluatter selects the column retired of the table drug. We obtained
retired , which causes the bug. a similar result for the issue ‘1334’ @roadleaf Commerce

3) Only detected by FPCT: The second type is ‘misused column values’. PPCT and SPCT

The bugs in this pattern are detected only by FPCT maindietect this type of bug due mainly to two reasons; either the
because there is a misplaced logical operator (AND, OR) oolumns whose values of records cause the bug are selected in
a mistake in the conditional inversion in the query. Figurthe query or the value of the wrong column is used in the code.
8 shows an actual query with the issue ‘TRUNK-4530’. Thighe right side query in Figure 9 shows an actual query with
query is supposed to retudnug records when both theame the issue ‘TRUNK-3620'. This query select®ncept _id

and name of the tableconcept_name related withdrug andanswer_concept from concept_answer . Although

are forward matches of ‘asa’. However, this query actualthe value of concept_answer should be used in the
returnsdrug records when eithemame was a forward match code, the valueconcept_id is used instead. The mod-
of ‘asa’. The module causes a bug when it is executed witte causes a bug when it is executed with records whose
drug records and eitherame is not a forward match of ‘asa’. concept_id andanswer_concept have different values
Therefore, the logical operator ‘AND’ of the second conditiofe.g., non-null values foconcept_id and null values for

in the WHERE clause should be ‘OR’. FPCT can detect sueimswer_concept).

SELECT
this.retired,

FROM drug this

WHERE

// Tthis.retired = 0] was redundant !!
this.retired = 0 AND
this.name LIKE %2%

ORDER BY ...;

Fig. 10. Actual query of the issue (TRUNK-2392)

// At least one record obtained by the query can
cause the bug !!
SELECT

FROM location_tag_map map0
INNER JOIN location_tag locationtal
ON map0.location_tag_id =
locationtal.location_tag_id
WHERE
mapO0.location_id = 1;

SPCT are valuable because they detect bugs not detected by
other methods, their efficiencies could be improved.

C. Limitation

1) Cost Calculation:
We defined the number of records to reach 100% coverage
as the cost. However, for PPCT and SPCT, we need make
additional efforts to set the candidate equivalence classes of the
columns. In our case study, we made very few efforts because
we set them uniformly based on the type of columns. In the
future, we have to conduct some experiments to measure the
additional cost because the equivalence classes of the columns
setting takes some time in practical use.

2) Our Coverage Measurement Tool:
We implemented a coverage measurement tool for PPC and
SPC, but some parts are incomplete.

To generate the coverage criteria in the step 4 in Section
[, our tool analyzes the SQL(SELECT) query to collect the

selected tables, columns, and conditions in the WHERE clause,
but ignores conditions in the JOIN clause. To reduce the cost,
the conditions in the JOIN clause must be collected to remove
parameter combinations that do not satisfy the conditions in
5) Only detected by FPCT and PPCT: the JOIN clause. Actually, some gqueries found in the issues
The bugs in this pattern are detected by FPCT and Pp@frBroadleaf Commercaad many JOIN clauses, but because
mainly because redundant conditions exist in the WHEREPCT only used the simple WHERE clause, it required as
clause. Figure 10 shows an actual query with the issiE@ny records as PPCT. Furthermore, our tool ignores the
“TRUNK-2392". Although this query should retumot-retired ~condition between columns such eslumnl = column2
drug records whoseame LIKE %2% it returns a”drug in the WHERE clause. When such conditions exists in the
records whos@ame LIKE %2% The module causes a bugduery, focusing on the overlapping equivalence classes should
when it is executed withetired drug records whoseame reduce the costs. . . .
LIKE 9%2% FPCT can detect such a bug because it can noticdn the coverage measurement in the step 5 in Section il
misplaced logical operators. Similarly, PPCT also can deté4’ tool inspects which parameter combinations are covered
such a bug because the tablleig selected in the query hasusing the query results. However, it regards binary types and
the columnretired , which is referred to in the WHERE €numerated types as string types. In order to calculate PPC
clause. and SPC more accurately, both binary and enumerated types
6) Detected by any of the three testing methods: should be processed as their own types.
The bugs in this pattern are detected by any of the testibg Threats to Validity

methods mainly because any record in the query causes thg, ihe case study, we manually set the equivalence classes
bug. Figure 11 shows the actual query of the issue “TRUNK the columns based on the types of columns. However, this
4036'. This query should returfocation_tag — records may affect the accuracy and costs of our testing methods,
related with theloation record whosdocation_id = and is a threat to internal validity. In the future, especially
1. However, the module causes a bug when this query retuiRSregression testing, we would like to set the equivalence
at least ongocation_tag record. Because the records arg|asses by analyzing the tendency of the values of columns in
prepared using the query, such a bug can be detected with gnya4| database.
of the testing methods. A similar result is obtained for the Tpe targets in the case study wepenMRSandBroadleaf
issue ‘1310’ ofBroadleaf Commerce Commercg which have about 400KLOC and interact with

about 1000 columns. Although its size is sufficidBitpadleaf
SPC,%mmercehas fewer bugs tha®penMRS Therefore, the

credibility of the results ofBroadleaf Commercés slightly

To reach 100% coverage f@DpenMRS 619 records for lower than that oDpenMRS$Sand is a threat to internal validity.
FPCT, 1643 records for PPCT, and 1437 records for SP@Tthe future, we would like to conduct a case study on another
are needed (Table V, row 8). Thus, SPCT requires about Z&sion ofBroadleaf CommerceA threat to external validity is
more records than FPCT, indicating that SPCT is more costflgat our case study is limited to open source software systems
However, compared to PPCT, SPCT requires fewer recolidsa single software domain. In the future, we would like to
(0.87 times). For bugs that both PPCT and SPCT detect, SP&/luate our testing methods by applying them to industrial
is more efficient. The results indicate that although PPCT asdftware with different software domains.

Fig. 11. Actual query of the issue (TRUNK-4036)

B. RQ2: How many records are needed to reach 100%
coverage?

VI. RELATED WORK record’s values. In contrast, PPCT and SPCT measure the

variety in the record’s values.
Pan et al. proposed a method to generate a database state via

dynamic symbolic execution (DSE) [18][19]. Then they lever- VII. CONCLUSION
aged DSE to examine close relationships among host variables , L
embedded SQL query statements, and branch conditions in thdO detect more buﬁ_s r'}” database applications, we proposed
source code. They implemented their approach in Pex, which CT @nd SPCT, which are pairwise coverage-based testing
is a state-of-the-art DSE-based test generation tool. Un"%chnlque_s. Our methods_ fo_cus on the sele_cted el_ements_ in
their study, which focused on increasing code coverage, oge- dueries and apply pairwise testing techniques with equiv-

work focuses on detecting bugs, that are not detected by tes gnce classes of columns from user inputs and conditions in
with the code coverage mentioned in Section II. thé queries. We also implemented a tool that measures PPC

Some studies have examined coverage based on an ﬁgg SPC as well as automates some of the testing process.

qguery. Chays et al. proposed a framework to test databass, Ve demonstrated their applicability by applying PPCT

applications [20][21][22][23] using database schema integrif] - 1 o | 0 IWe OPen source software systems, which have
constraints, user inputs, and conditions in queries to consi : w u umns.

the state of a database. They also implemented a tool to po u__hqugh PPCT and .SPCT currently have higher costs than.
late a database with meaningful data that satisfy the datab égtlng testing techniques, the case study suggests that their
constraints. Tuya et al. proposed full predicate coverage to tggﬁts can be further reduced. . .

SQL queries based on modified condition/decision coverage 0 measure the costs of candidate equivalence classes of
[7][8]. They focused on the conditions in queries to consid(.glglumnS ;ettlng for. PPCT and SPCT, we plan to Condl.JCt
the necessary database state; this coverage detected mispl %EQ% subject eXp?”memS' Furthgrmore, we plap 0 con§|der
logical operators or mistakes of conditional inversion. The tabase schemamtegntyponstramts and clgsterlng tech_mques
also proposed a database shrinking technique by using gthe values in columng n datgbases studied by Hashimoto
coverage [9]. Although both works focus on the condition t al. [3_0] to create |n|t|_al equwalence_ classes_ .Of columns
in the queries, they did not emphasize what is selected thomqncally for the setting .COSt redu_ct|on. Addltlonally, we
the queries. However, their works provide insight some wh(¥Y1°u'd like to apply our techniques to industrial products.

considering the variations in the records’ values. To detect
more bugs in database applications, we would like to combine
the above techniques with ours. [1] M. Baluda, P. Braione, G. Denaro, and M. Pezzé, “Structural coverage

of feasible code,” irProceedings of the 5th Workshop on Automation of
Tuya et al. have proposed a tool to generate mutants of o .= = (ASTR010, pp. 59-66.

SQL database queries to test database applications [24][28} K. Sakamoto, K. Shimojo, R. Takasawa, H. Washizaki, and Y. Fukazawa,

REFERENCES

They proposed four mutation operators for SQL quergﬁ; “Occf: A framework for developing test coverage measurement tools

: ; supporting multiple programming languages,” Rroceedings of the
OR NL, IR. SC performs mqtatlons on t_h_e main clauses, 2013 IEEE 6th International Conference on Software Testing, Verifi-
OR replaces the operators in the conditiodl. handles cation and Validation (ICST)2013, pp. 422—-430.

null values, andIR replaces identifiers in the query suchl[3] E. Albert, I. Cabanas, A. Flores-Montoya, M. Gémez-Zamalloa, and

: S. Gutierrez, “jpet: An automatic test-case generator for javaPri
as columns and constants. Pan et al. also applied these ceedings of the 2011 18th Working Conference on Reverse Engineering

mutation operators to transform SQL queries into normal (wcRE) 2011, pp. 441-442.
program codes, and subsequently generated both effecti# K. K. Aggrawal, Y. Singh, and A. Kaur, “Code coverage based tech-

; s ; i1 hique for prioritizing test cases for regression testiCM SIGSOFT
program inputs and sufficient database states via DSE to kill Software Engineering Notes (SENpI. 29, pp. 1-4. 2004.

mutants [26]. Zhou et al. also_proposed a mUta_tion testing] . Juergens, B. Hummel, F. Deissenboeck, M. Feilkas, C. Schidgel,
approach to extend these mutation operators and implemented and A. Wiibbeke, “Regression test selection of manual system tests in

inati ; practice,” in Proceedings of the 2011 15th European Conference on
JDAMA (JavaR)Database Application Mutation Analyzer) for Software Maintenance and Reengineering (CSNR}11, pp. 309-312.

JavaRpprograms that interact with a database [27]. All of thesgs) s Tokumoto, K. Sakamoto, K. Shimojo, T. Uehara, and H. Washizaki,
work focused on SQL queries to test database applications but “Semi-automatic incompatibility localization for re-engineered industrial

n h mbination f val for lumn I in L software,” in Proceedings of the 2015 International Conference on
ot t. e combinations of values for columns selected . .SQ Software Testing Verification and Validation (ICS2pP14, pp. 91-94.
queries. Because PPCT and SPCT focus on the variation ﬁf M. J. Suérez-Cabal and J. Tuya, “Using an sql coverage measurement

column’s values selected in SQL queries, they can detect bugs for testing database applications,” Proceedings of the 12th ACM

even if some of the necessary conditions are omitted. SIG_SOF'I_' Twelfth International Symposium on Foundations of Software
Y Engineering (FSE)2004, pp. 253-262.

Kapfhammer et al. proposed def-use coverage for progragg) j. Tuya, M. J. Suarez-Cabal, and C. de la Riva, “Full predicate cover-
interactions with databases [28]. They mappeeate, read, age for testing sql database querieSgftware Testing, Verification &

; ; ; Reliability (STVR)vol. 20, pp. 237-288, 2010.
Update and deletewhich are the four basic functions of J. Tuya, M. J. Suérez-Cabal, and C. de la Riva, “Query-aware shrinking

. 9
database management systems, into database def-use. Thg}fest databases,” ifroceedings of the 2nd International Workshop on
also implemented a coverage-monitoring tool to measure this Testing Database Systems (DBTe2(09, pp. 6:1-6:6.
def-use coverage for various granularities [29]. However, thig) "Pairwise testing.” [Online]. Available: hitp:/imw.pairwise.org/
. . 11] “Openmrs.” [Online]. Available: http://openmrs.org/
coverage measures whether defined objects (databases, t %s‘,Bmadleaf commerce.” [Online]. Available:
columns and records) are used but not the variations in the http://www.broadleafcommerce.org/

[13] D. R. Kuhn and M. J. Reilly, “An investigation of the applicability of
design of experiments to software testing,”moceedings of the 27th
Annual NASA Goddard Software Engineering Workshop (SE2002,
pp. 91—

[14] “Pairwise independent combinatorial testing tool.” [Online]. Avail-
able: http://blogs.msdn.com/b/nagasatish/archive/2006/11/30/pairwise-
testing-pict-tool.aspx

[15] “Git.” [Online]. Available: https://git-scm.com/

[16] “Jira.” [Online]. Available: https://jira.atlassian.com/

[17] “Sqlfpc - generation of full predicate coverage rules
for testing sql database queries.” [Online]. Available:
http://in2test.Isi.uniovi.es/sqlfpc/?lang=en

[18] K. Pan, X. Wu, and T. Xie, “Generating program inputs for database
application testing,” inProceedings of the 2011 26th IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE)1,
pp. 73-82.

[19] K. Pan, X. Wu, and T. Xie, “Guided test generation for database
applications via synthesized database interactioA€M Transactions
on Software Engineering and Methodology (TOSEM). 23, pp. 12:1—
12:27, 2014.

[20] D. Chays, S. Dan, P. G. Frankl, F. I. Vokolos, and E. J. Weyuker,
“A framework for testing database applications,”Rmoceedings of the
2000 ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA)2000, pp. 147-157.

[21] D.Chays, Y. Deng, P. G. Frankl, S. Dan, F. I. Vokolos, and E. J. Weyuker,
“An agenda for testing relational database applications: Research arti-
cles,” Software Testing, Verification & Reliability (STVRjpl. 14, pp.
17-44, 2004.

[22] Y. Deng, P. Frankl, and D. Chays, “Testing database transactions
with agenda,” inProceedings of the 27th International Conference on
Software Engineering (ICSE2005, pp. 78-87.

[23] D. Chays, J. Shahid, and P. G. Frankl, “Query-based test generation for
database applications,” Proceedings of the 1st International Workshop
on Testing Database Systems (DBTe2008, pp. 6:1-6:6.

[24] J. Tuya, M. J. Suarez-Cabal, and C. de la Riva, “Sqglmutation: A tool
to generate mutants of sqgl database queriesPrateedings of the 2nd
Workshop on Mutation Analysis (Mutatigrd006, pp. 1—.

[25] J. Tuya, M. J. Suérez-Cabal, and C. d. la Riva, “Mutating database
queries,”Information and Software Technolggyol. 49, pp. 398-417,
2007.

[26] K. Pan, X. Wu, and T. Xie, “Automatic test generation for mutation
testing on database applications, Rroceedings of the 8th International
Workshop on Automation of Software Test (AZDLL3, pp. 111-117.

[27] C. Zhou and P. Frankl, “Mutation testing for java database applications,”
in Proceedings of the 2009 International Conference on Software Testing
Verification and Validation (ICST)2009, pp. 396—405.

[28] G. M. Kapfhammer and M. L. Soffa, “A family of test adequacy
criteria for database-driven applications,” Proceedings of the 9th
European Software Engineering Conference Held Jointly with 11th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering (ESEC/FSER003, pp. 98-107.

[29] G. M. Kapfhammer and M. L. Soffa, “Database-aware test coverage
monitoring,” in Proceedings of the 1st India Software Engineering
Conference (ISEC)008, pp. 77-86.

[30] Y. Hashimoto, K. Oshima, H. Danno, R. Mibe, and K. Yamaguchi, “A
proposal of a method to analyze rdb by columns to understand details
of the specification,”The National Convention of IEEJ Electronics,
Information and Systemgp. 171-175, 2013.

