
Pairwise Coverage-based Testing with Selected
Elements in a Query for Database Applications

Koji Tsumura, Hironori Washizaki, Yoshiaki Fukazawa
dept. Computer Science

Waseda University
Tokyo, Japan

kojisuke_awesome@asagi.waseda.jp

Keishi Oshima, Ryota Mibe
Hitachi, Ltd., Research & Development Group, Center

for Technology Innovation - Systems Engineering
Kanagawa, Japan

keishi.oshima.rj@hitachi.com

Abstract—Because program behaviors of database applications
depend on the data used, code coverages do not effectively test
database applications. Additionally, test coverages for database
applications that focus on predicates in Structured Query Lan-
guage (SQL) queries are not useful if the necessary predicates are
omitted. In this paper, we present two new database applications
using Plain Pairwise Coverage (PPC) and Selected Pairwise
Coverage (SPC) for SQL queries called Plain Pairwise Coverage
Testing (PPCT) and Selected Pairwise Coverage Testing (SPCT),
respectively. These coverages are based on pairwise testing
coverage, which employs selected elements in the SQL SELECT
query as parameters. We also implement a coverage calculation
tool and conduct case studies on two open source software
systems. PPCT and SPCT can detect many bugs, which are
not detected by existing test methods based on predicates in
the query. Furthermore, the case study suggests that SPCT can
detect bugs more efficiently than PPCT and the costs of SPCT
can be further reduced by ignoring records filtered out by the
conditions of the query.

Index Terms—combinatorial testing; database testing; cover-
age; test data

I. I NTRODUCTION

Testing database applications using components based on
database management systems is difficult because the ex-
ecution path and behaviors depend on the database state.
Although some code coverages (e.g., statement coverage,
branch coverage, etc. [1][2]) and testing methods automatically
generate tests, prioritize test cases, and localize bugs based on
code coverage [3][4][5][6], they cannot detect bugs due to the
records in the databases because data variations in the records
are not considered.

Most applications maintain data using a Relational Database
Management System (RDBMS) and a Structured Query Lan-
guage (SQL) query to manage the contained data. Some
coverage and test methods consider data variations with SQL
executed in the applications [7][8][9], but they focus on the
condition predicates in the query such as in the JOIN or
WHERE clauses. These methods can detect bugs caused by
conditional mistakes in the queries [e.g., misplaced logical
operators (AND, OR) or mistakes of conditional inversion].
However, they cannot detect bugs due to the lack of conditions
such as an omission of a necessary condition in the SQL query
or in the IF statement in the program code.

To detect bugs due to a lack of conditions, we propose
Plain Pairwise Coverage Testing (PPCT) and Selected Pairwise
Coverage Testing (SPCT), which are new testing methods for
database applications using Plain Pairwise Coverage (PPC)
and Selected Pairwise Coverage (SPC), respectively, for SQL
queries. Pairwise testing [10] is a Combinatorial Test Design
technique in which two parameters and their test values are
taken as inputs to test all combinations of two parameters’
values. In PPC, all COLUMNs with parameters in the TABLEs
in the select query are used as the parameters, and the test
values are set to verify if all possible combinations of the
two parameters’ values appear in the query results. In SPC,
COLUMNs in the SELECT query are used as the parameters,
and all their test values are set to verify if all possible
combinations of the two parameters’ values appear in the query
results. Furthermore, SPC focuses on the WHERE clauses to
remove combinations that cannot be obtained by the query.

This study aims to address the following Research Ques-
tions:

RQ1 Can PPCT and SPCT detect bugs that existing testing
method cannot?

RQ2 How many records are needed to reach 100% PPC and
SPC coverage?

To evaluate the applicability of PPCT and SPCT, we use a
case study where PPCT and SPCT are applied to two open
source software systems [11] [12]. Each open source software
system has about 400KLOC and interacts with about 100
tables and 1000 columns. Because they have bug management
systems, we employ their issues as target bugs. In our case
study, PPCT and SPCT detects 61 of the 89 bugs that existing
method cannot. In addition, the case study results suggest that
ignoring records not obtained by the query can further reduce
costs.

This paper makes the followings contributions:

• PPC and SPC, which are new record coverages that apply
pairwise testing coverage using selected elements in a
query, are proposed.

• A tool to calculate PPC and SPC is implemented.
• PPCT and SPCT, which are new test methods for database

applications using PPC and SPC, respectively, are pro-
posed.

• PPCT and SPCT are applied to two actual products.
• PPCT and SPCT can detect 68.54(%) of bugs that existing

testing method cannot.
• SPCT can detect bugs more efficiently than PPCT by

ignoring redundant combinations.

The remainder of the paper is organized as follows. Section
II provides background information and a motivating example.
Section III describes PPCT, SPCT, and our tool to calculate
PPC and SPC. Sections IV and V present our case study
and results, respectively. Section VI discusses related works.
Finally, Section VII contains our conclusion and future works.

II. BACKGROUND

Table I shows the schema, while Figure 1 shows the code
and query of our motivating example. Every record in the
Tableitem , which indicates whether the record is alive or not,
has the columnvoided . The methodsumPrice(String
category) calculates the total price of the‘unvoided’items.
This code finds items by category (Line 4) and sums up their
prices (Line 6-10). Because the code sums only ‘unvoided’
item’s prices, ‘voided’ items in the query must be filtered
out. However, ‘voided’ items are not filtered because there
is neither WHERE clause in the query nor an IF statement in
the code. Thus, records must be prepared according to specific
criteria to test this code.

A. Testing with Code Coverage

Consider a test that uses code coverage (e.g., state-
ment coverage). In the motivating example, we only
need sumPrice(“food”) for the item record whose
category = ‘food’ to achieve 100% statement coverage.
However, this method cannot detect the abovementioned bug
with a record whosecategory = ‘food’ AND voided
= false even though the statement coverage is 100%.

B. Testing with Predicate Coverage of SQL

Some studies test database applications with SQL [7][8][9]
by focusing on the predicates of SQL such as conditions in the
WHERE clause and the integrity constraints of the database
schema. These criteria can detect conditional mistakes in the
query because they verify whether record variations can be
covered in terms of the conditions. However, they cannot
detect bug in the motivating example because it is due to the
lack of a condition.

Consider a code test using the “Full Predicate Cover-
age”(FPC) proposed by Tuya et al. [8]. This coverage focuses
on the conditions of the JOIN clause and the WHERE clause
in the query to evaluate the MC/DC coverage of the query.
For the motivating example, FPC focuses on the condition
WHERE category = ‘food’ . To achieve 100% coverage,
FPC requires records whosecategory = ‘food’ and
category ̸= ‘food’ . However, even with 100% coverage,
it cannot detect bugs with recordsvoided = false .

TABLE I
DATABASE SCHEMA OF THE MOTIVATING EXAMPLE

Table item
Attribute Type Constraint

id Int Primary Key
category String Not null
voided Bool ∈ {true, false}
price Int Not null

created_at Date Not null
updated_at Date Not null

/* Calculate a total price of ‘unvoided’ items */
public sumPrice(String category) {
// Get ‘item’ records from database with query
List<Item> items = getItems(category);
int price = 0;
for (Item i : items) {
// Sum up prices of ‘unvoided’ items
// Bug!!! We need filtered out ‘voided’ items, for

example, adding IF statement ‘if (!i.isVoided())’
price += i.getPrice();
}
return price;
}

1

2

3

4

5

6

7

8

9

10

11

12

/* Query executed by “getItems(category)” */
SELECT
id, category, voided, price
FROM item
WHERE category = ‘food’;

Fig. 1. Code and query of the motivating example

C. Pairwise Testing

Combinatorial testing can detect bugs due to parameter
interactions in the software being tested with a covering array
test suite generated by an algorithm. Pairwise testing is a
combinatorial testing technique in which two parameters and
all their test values are used as inputs to test all possible
combinations. If only one or two conditions exist, more than
70% of bugs can be detected [13]. Because pairwise-generated
test suites are smaller than exhaustive ones and effectively find
defects, many tools exist to generate pairwise test suites [14].

To test database applications with a pairwise testing tech-
nique, the parameters are (tables or columns), candidate val-
ues, and presence of constraints all must be consider.

III. PAIRWISE COVERAGE-BASED TESTING

PPCT and SPCT are new test methods for database appli-
cations that focus on the variety of database records used in
testing. To reduce the number of tested combinations, we use
a pairwise testing technique.

A. Overview

Figure 2 overviews PPCT and SPCT. The target of PPCT
and SPCT is the database used in the application being
tested. Three inputs are required: the target database for the
coverage measurement, a test case to extract the SQL SELECT
query, and the test criteria. The last one is retrieved from the

requirement documents, database schema definitions, and the
tendency of the records in the actual database. PPCT uses PPC
(plain pairwise coverage), while SPCT uses SPC (selected
pairwise coverage) for a query. PPC and SPC generate the
coverage criteria using a pairwise testing technique which uses
columns from the query as parameters and equivalence classes
of columns as candidate values. The query results are used to
verify which coverage criteria are satisfied. Both PPCT and
SPCT involve six steps. In our coverage measurement tool,
steps 3 - 5 are automatically implemented.

1) Execute a test case:
Testers retrieve the desired SQL SELECT query to measure
the coverage from DBMS query logs or application logs.

2) Set the candidate equivalence classes of the columns in
the database:
Testers can set the following equivalent classes based on the
type of the column:

Bool
Testers can set ‘true’ and ‘false’ as candidate values.

String
Testers can set what to measure in a regular expres-
sion manner.

Boundary Value
Testers can set the range of the values they want to
measure with comparison operators (i.e.,=, ̸=, >,
≥, <, or ≤)

3) Execute a query:
Our tool executes the SQL SELECT query obtained by step
1 to the database in the initial input and collects the query
results.

4) Generate the coverage criteria:
Pairwise testing is used as an element technology to generate
the coverage criteria. Our tool generates the coverage criteria
using the equivalence classes of the columns created in step
2 and the SELECT query in step 3. Details of this step are
described in the next subsection.

5) Measure the coverage:
Our tool measures the coverage using the query results in step
3 and the coverage criteria in step 4. Details of this step are
described in the next subsection.

6) Update the database:
According to the coverage measurement results in step 5,
records are inserted, updated, and deleted in the database.
Steps 3 - 6 are repeated to prepare an effective database set
for testing.

B. Our Record Coverages

In this subsection, we propose our record coverages to
test the database applications used in steps 4 and 5 in the
PPCT/SPCT overview. Figure 3 an example of the flow for
steps 4 and 5 using the motivating example in Section II.

1) Plain Pairwise Coverage (PPC):
In PPC, we focus on the all COLUMNs with TABLEs in the
query.

Conducted
automatically by our

tool.

Test
Criteria

(1)Execute
a test case

(2)Set the
candidate
equivalence
classes of the

columns

Test caseDatabase

SELECT
query

Equivalence
Classes

of the Columns

(3)Execute a
query

(4)Generate
the coverage

criteria

Query
results

Coverage
criteria

(5)Measure
the coverage

Coverage
measurement

results

(6)Update the
database

Fig. 2. PPCT/SPCT overview

q represents a SQL SELECT query obtained by step 1
in the PPCT/SPCT overview. Ifci(i = 1, 2, · · ·) repre-
sents the parameter column used in pairwise testing, then
C (the set of parameter columns) is defined asC =
{c1, c2, · · · }. For the example in Figure 3, the schema of
the tableitem is shown in Table I. Because PPC focus on
all COLUMNs in TABLES referred in the queryq, C =
{id, category, voided, price, created_at, updated_at}.

Let us refer to the equivalence classes of columns as the user
definition obtained by step 2. Ifdj(i = 1, 2, · · ·) represents
a column in the user definition, thenD (the set of columns
in the user definition) is defined asD = {d1, d2, · · · }. In
Figure 3,D = {category, voided, created_at}. In the user
definition, if edjk(k = 1, 2, · · ·) represents an equivalence
class of columndj , thenEdj (the set of equivalence classes
of columndj) is defined asEdj = {edj1, edj2, · · · }. In Figure
3, Evoided = {true, false}.

For each columnci ∈ C, the set of possible values ofci is
defined as a set of equivalence classesEci , which is given by
the following formula:

Eci =

{
Edj (ci ∈ D ∧ ci = dj)

Uci (otherwise)
(1)

Uci in formula (1) means an equivalence class that includes
any possible value for columnci. In Figure 3, the columnid
is not in D. Therefore,Eid = Uid. Because the columnid
is an integer type,Uid = {x|x ∈ Z}. Between columnsci
and cj ∈ C, the set of combinations of possible values to be

testedPij is defined by the following formula (wherei > j
andN = |C|)

Pij = Uc1 × · · ·
× Uci−1 × Eci × Uci+1 × · · ·
× Ucj−1 × Ecj × Ucj+1 × · · · × UcN

(2)

Then the set of all possible combinations with at least two
parameters to be testedP is defined by the following formula
(whereN = |C|)

P = (∪N−1
i=1 ∪N

j=i+1Pij)
∪

(∪N
k=1Eck) (3)

P for the flow example is shown as the coverage criteria in
Figure 3.

If the set of the parameter pairs appearing in the results
obtained in step 3 is referred to asAppeared(P), then the
coverageCovPPC is defined as

CovPPC =
|Appeared(P)|

|P |
× 100(%)

In the coverage measurement results in Figure 3, a check
(cross) indicates that the pair does (does not) appear in the
records. In this example, step 3 gives two records, but only
three combinations, {(voided, category) = (false, ‘food′),
(voided) = (false), (category) = (‘food′)} appear.
Hence, CovPPC = 3/18 = 16.67(%). However, in this
example, the parameter combination(voided, category) =
(false, ‘clothes′) cannot appear in the records because it is fil-
tered out by the WHERE conditioncategory = ‘food’ .
Furthermore, parameter combinations concerned with the col-
umncreated_at will not appear in the records because the
column is not selected by the query. Therefore, PPC cannot
reach 100 % and PPC is not effective in some cases.

2) Selected Pairwise Coverage (SPC):PPC focuses not
only on the parameter combinations obtained by the query,
but also the parameter combinations not obtained. In con-
trast, selected pairwise coverage (SPC) focuses on pa-
rameter combinations that can be obtained by the query
to cover them efficiently. SPC regards the set of all
COLUMNs selected in the queryq as C. In Figure 3,
C = {id, category, voided, price}. The definitions ofEci ,
Pij , andP are the same as those of PPC.

To ignore parameter combinations not obtained byq, P
must be filtered. LetW be the set of equivalence classes of
columns satisfying the conditions inq. In Figure 3,W =
{Ecategory = {‘food′}}. Psatisfied, which is the parameter
combinations that can be obtained byq, is defined as the set
calculated by the algorithm in Figure 4. The dotted lines in
Figure 3 show the set of combinations forPsatisfied. The set
of pairs appearing in the results obtained by step 3 is referred
to asAppeared(Psatisfied). Finally, the coverageCovSPC is
defined as

CovSPC =
|Appeared(Psatisfied)|

|Psatisfied|
× 100(%)

In Figure 3,CovSPC = 3/5 = 60(%).

Table Column Equivalence Classes

item

voided true, false

category ‘food’, ‘clothes’

created_at
<‘2015-12-01’,
>=’2015-12-01’

SELECT
id, category,
voided, price

FROM
item

WHERE
category = ‘food’;

id category voided price

5 ‘food’ false 100

9 ‘food’ false 250
Coverage Measurement Results

Equivalence Classes (by Step 2)SELECT query (by Step 1)

Query results (by Step 3)

Step 4

�SPC only focuses
on combinations
surrounded by
dotted line.

Pair

category created_at

‘food’ ‘clothes’
>’2015-
12-01’

<=‘2015-
12-01’

vo
id
e
d

true

false
ca
te
g
o
ry

‘food’

‘clothes’

Step 5

Coverage Criterion

Pair

category created_at

‘food’ ‘clothes’
>’2015-
12-01’

<=‘2015-
12-01’

vo
id
e
d

true × × × ×

false � × × ×

ca
te
g
o
ry

‘food’ × ×

‘clothes’ × ×

Single

vo
id
e
d

true

false

ca
te
g
o
ry

‘food’

‘cloth
es’

cre
a
te
d
_a
t

>‘201
5-12-
01’

<=‘20
15-

12-01’

Single

vo
id
e
d

true ×

false �

ca
te
g
o
ry

‘food’ �

‘cloth
es’

×

cre
a
te
d
_a
t

>‘201
5-12-
01’

×

<=‘20
15-

12-01’
×

Fig. 3. Example of the flow in steps 4 and 5

���������� � ∅

for (��� in �) {

for (��� in ���) {

if (��� ∩�	! � 	∅) {

���������� = ���������� ∪ ���
}

}

}

for (
	� in �) {

for (�	� in
	�) {

if (�	� ∩�	! � 	∅) {

���������� = ���������� ∪ �	�
}

}

}

Fig. 4. Algorithm ofPsatisfied

C. Testing with our record coverage

Next, we tested the motivating example mentioned in Sec-
tion II with our record coverage.

Figure 3 shows the parameter combinations in PPC. Among
them, a bug is found when callingsumPrice(“food”)
with the record where(voided, category) = (true, ‘food′)

The necessary parameter combinations in SPC are also
shown in Figure 3. Similar to PPC, a bug is detected
when callingsumPrice(“food”) with the record where
(voided, category) = (true, ‘food′)

IV. CASE STUDY

We carried out a case study, targetingOpenMRS[11] and
Broadleaf Commerce[12]. These targets were chosen because:

(1) They use SQL queries to manage the data in their
databases.

(2) They have real bugs, which are individually managed
using a tracking system.

(3) They have a sufficient number of tables and columns
to evaluate RQ2.

A. Case Study Overview

OpenMRSis an open source medical record system platform
for developing countries. We used theopenmrs-coremodule,
which is a core module ofOpenMRSthat has api and web
application codes as the targets.Broadleaf Commerceis an
open source e-commerce platform. We used theBroadleaf-
Commercemodule, which is a core module ofBroadleaf
Commerce. Both are written in JavaR⃝1 and interact with
approximately 100 tables in the database. We usedMySQLR⃝2

(Ver 14.14 Distrib 5.5.27, for Win32) as the RDBMS. The
case study used four versions ofOpenMRSand one version of
Broadleaf Commercefor the control systemGit [15]. Figure
5 overviews of the case study, which can be divided into five
steps:

1) Systematically filter bugs:
Issues are filtered by condition.OpenMRSmanages the bugs
and features to be implemented in the future byJIRA [16],
which is an issue management system. Initially, issues are fil-
tered by the condition “Project=TRUNK AND IssueType=Bug
AND Status=Closed”. The condition “Project=TRUNK” re-
moves bugs not related withopenmrs-core. If an issue is
closed, the cause of the bug can be determined by inspecting
the discussion and activities of the issue. Next issues are
extracted by the committed files with at least one file related
to database access. Service classes to execute SQL to obtain
records, controller classes to process the records obtained
through service classes, and their test classes are assumed to
be related to database access. BecauseBroadleaf Commerce
manages the bugs and features to be implemented in the
future by Git issues page, issues are also filtered by the
condition “label:type-bug is=closed”. Next issues are extracted
by committed files as well asOpenMRS. All of these files can
interact with the database directly or indirectly.

1Java is a registered trademark of Oracle and/or its affiliates.
2MySQL is a registered trademark of Oracle and/or its affiliates.

Issue
Management

System

Systematicall
y Filtered
Bugs

Manually
Filtered Bugs

Query Logs

Results
(Bug

Detectability)

Results
(Cost)

(1)Systematic
ally

filter bugs

(2)Manually
filter bugs

(3)Reproduce
bug scenarios

(4)Analyze
bug

detectability

(5)Calculate
costs

Fig. 5. Overview of the case study

2) Manually filter bugs:
Next issues not related with bugs due to the records in
the database and not detected by code coverage are manu-
ally filtered. Unrelated issues include problems in setting up
software, problems generated by Continuous Integration (CI)
tools, etc.

3) Reproduce bugs scenarios:
Each bug is reproduced by conducting its scenarios in order to
obtain its query log. Scenarios are determined by inspecting
the discussion, activities, and committed files in their issue
pages.

4) Analyze bug detectability:
Each bug is then detected by three different methods: Full
Predicate Coverage Testing (FPCT) based on full predicate
coverage [8] (Section II), PPC Testing (PPCT) based on PPC
(Section III), and SPC Testing (SPCT) based on SPC (Section
III). To evaluate whether the testing methods can detect the
bug, the procedure to execute each method involves three
steps. First, which records cause the bug (some columns
have certain values, etc.) are determined by inspecting the
discussion, activities, and committed files in the issue. Second,
records are prepared based on the query log obtained by the
reproduction of bug scenarios so that each method achieved
100% coverage. Finally, the applicability of testing method
is verified. If a testing method identifies at least one record
from the first step, it is deemed as appropriate. The coverage
measurement tool depends on the testing method. For FPCT,
SQLFpc, a full predicate coverage rules generation tool to test
SQL database queries [17], is used. Our tools mentioned in
Section III are used for PPCT and SPCT. The equivalence

TABLE II
CASE STUDY TARGET SUMMARY

Target Version LOC Tables Columns Release Date

OpenMRS

1.8 416446 95 945 Jun., 2011
1.9 460725 102 1084 Jun., 2012
1.10 449621 101 1104 Nov., 2014
1.11 500015 99 1101 Feb., 2015

Broadleaf
Commerce 4.0 385369 183 1033 Apr., 2015

TABLE III
TRANSITION OF THENUMBER OF BUGS

Target
Step OpenMRS Broadleaf Commerce

1.8 1.9 1.10 1.11 4.0

Initial 453 720 424 379 125
After step 1 61 94 14 29 39
After step 2 20 63 9 11 9

classes of columns are needed from step 4 (Section III). For
user definitions, the equivalence classes for each column are
set based on the type of column. For a number-type column
(e.g., integer, double, float), ‘any values in the range for the
column’ is set as an equivalence class. For a date-type column
(e.g., date, datetime), ‘past’ and ‘future’, which mean past or
future from the present time, respectively, are set. A string-
type column (e.g., char, string) is set as either an empty string
or a not empty string. Notice that ‘NULL’ is added as an
equivalence class if the column allowes NULL values.

5) Calculate costs:
Finally, the cost of each testing method is calculated. The
number of records to reach 100% coverage is regarded as
the cost of the testing method. As mentioned in Section
III, PPC cannot reach 100% because of redundant parameter
combinations. Therefore, we regard the number of records,
where all parameter combinations including the redundant
ones appear, as the cost of PPCT. The generation tools to
reach 100% coverage vary by method. For FPCT,SQLFpcis
use, whereasPICT [14], which is the test generation tool by
pairwise testing with the user definitions, is used for PPCT
and SPCT.

Table II shows the LOC, number of tables and columns that
each version of software interacts with, and the release date
of each version. Table III shows the number of bugs at each
step.

B. Case Study Results

Table IV shows the results of the bug detectability for each
testing method. The first three columns underDetectability
for Each Methoddenote the bug patterns. A check (cross)
indicates that the test method can (cannot) detect the bug.
The fourth through eighth columns denote the number of bugs
for each version ofOpenMRSand Broadleaf Commerceby
pattern. The last column contains the total number of bugs for
each pattern. Table V shows the cost of each testing method.
The first and second columns indicate the version ofOpenMRS
and Broadleaf Commerce. The third through fifth columns,

TABLE IV
RESULTS OFBUG DETECTABILITY ANALYSIS

Detectability for Each Method
Number of Bugs

TotalOpenMRS Broadleaf
Commerce

FPCT PPCT SPCT 1.8 1.9 1.10 1.11 4.0

× × × 2 15 2 5 3 27
× × ✓ 0 0 0 0 0 0
× ✓ × 0 1 0 0 0 1
× ✓ ✓ 16 34 3 5 3 61
✓ × × 0 4 2 0 0 6
✓ × ✓ 0 0 0 0 0 0
✓ ✓ × 2 3 0 1 0 6
✓ ✓ ✓ 0 6 2 0 3 11

Total 20 63 9 11 9 112

TABLE V
RESULTS OF THECOST CALCULATION

Software Versions
Number of Records Cost Ratio (%)

FPCT PPCT SPCT SPCT/FPCT SPCT/PPCT

OpenMRS

1.8 86 288 259 301.16 89.93
1.9 305 873 711 233.11 81.44
1.10 88 196 185 210.23 94.39
1.11 50 149 145 290.00 97.32

Broadleaf
Commerce 4.0 90 137 137 152.22 100.00

Total 619 1643 1437 232.15 87.46

Number of Records, contain the number of records needed
to reach 100% coverage. The last two columns,Cost Ratio,
contain the ratio of SPCT to other testing methods.

V. D ISCUSSION

A. RQ1: Can SPCT detect bugs that existing testing method
cannot?

According to the seventh row in Table IV, SPCT detected
61 bugs that FPCT did not. Furthermore, neither FPCT nor
SPCT detected27+1 = 28 bugs (the fourth and sixth rows in
Table IV). In total, SPCT detected61/(61 + 28) = 68.54(%)
of the bugs that FPCT could not. Furthermore, according to
the sixth row, PPCT detected one more bug than FPCT.

On the other hand, according to the eighth row, FPCT
detected six bugs that PPCT and SPCT could not. Furthermore,
only ten of the bugs were detected by all three methods. There-
fore, our proposed testing methods and FPCT are orthogonal,
and should be used in combination to detect more bugs.

The types of bugs detected depend on the detectability
patterns. It should be noted that because PPCT involves SPCT,
it can detect the same bugs as SCPT. We observed six different
patterns with actual issues.

1) Not detected by any of the testing methods:
The bugs in this pattern are not detected by any of the
testing methods mainly because the records causing a bug
are obtained by multiple queries but each method focuses
on one query. This pattern requires that multiple queries be
detected simultaneously. Figure 6 shows the actual queries
of the issue ‘TRUNK-4437’, which is an ID of the issue
of OpenMRS. The tableorders is related with the table
drug by the columndrug_inventory_id as both have
the columnconcept_id . The module causes a bug when it
is executed with records whoseorders.concept_id ̸=

SELECT
…
order.concept_id,

order.drug_inventory_id,
…

FROM orders order
LEFT OUTER JOIN
…

WHERE
order.order_id = 1;

SELECT
…
drug.concept_id,
…

FROM drug drug
LEFT OUTER JOIN
…

WHERE
// 3 is order.drug_inventory_id obtained
by the left query !!
drug.drug_id = 3;

Fig. 6. Actual queries of the issue (TRUNK-4437)

SELECT
COUNT(DISTINCT this.provider_id)

FROM provider this
LEFT OUTER JOIN
….

WHERE
// �this.retired=0� was necessary here.!!
…

;

Fig. 7. Actual query of the issue (TRUNK-3339)

orders.drug.concept_id . In Figure 6, a bug is detected
whenorder.concept_id obtained by the left query is not
the same asdrug.concept_id obtained by the right query.
However, such bugs are not detected because these values are
obtained separately. A similar result occurs for the issue ‘1298’
of Broadleaf Commerce.

2) Only detected by PPCT:
The bugs in this pattern are detected only by PPCT due mainly
to two reasons. First, some of the necessary predicates are
omitted in the query. Second, the cause is something other
than the value of the record (e.g., the number of records).
Figure 7 shows an actual query with the issue ‘TRUNK-
3339’. Although this query is supposed to return the number
of provider records obtained by the condition, it returns the
number ofnot-retiredprovider records. The module causes
a bug when it is executed withretired provider records.
Therefore, an additional condition ‘this.retired = 0 ’ is
necessary. FPCT cannot detect such a bug. Furthermore, this
query only selects the columnprovider_id . SPCT cannot
detect this bug because the query does not select the column
retired , which causes the bug.

3) Only detected by FPCT:
The bugs in this pattern are detected only by FPCT mainly
because there is a misplaced logical operator (AND, OR) or
a mistake in the conditional inversion in the query. Figure
8 shows an actual query with the issue ‘TRUNK-4530’. This
query is supposed to returndrug records when both thename
and name of the tableconcept_name related withdrug
are forward matches of ‘asa’. However, this query actually
returnsdrug records when eithername was a forward match
of ‘asa’. The module causes a bug when it is executed with
drug records and eithername is not a forward match of ‘asa’.
Therefore, the logical operator ‘AND’ of the second condition
in the WHERE clause should be ‘OR’. FPCT can detect such

SELECT … FROM drug this
INNER JOIN concept concept1 ON …
…
INNER JOIN concept_name names2

ON concept1.concept_id = names2.concept_id
WHERE

this.retired = 0 AND
// The following logical operator should not be ‘AND’
but ‘OR’ !!

(LOWER(this.name) LIKE asa%
AND

LOWER(names2.name LIKE asa%));

Fig. 8. Actual query of the issue (TRUNK-4530)

SELECT
answers.concept_id,
answers.answer_concept,
// We should use answer_condept,
not concept_id !!
…

FROM
concept_answer answers

WHERE
answers0_.concept_id IN (…)

ORDER BY … ;

SELECT
…
this.retired,
…

FROM drug this
WHERE
this.name LIKE %NYQUIL%
// [this.retired = 0] was
necessary here !!

ORDER BY … ;

Fig. 9. Actual queries of the issues (TRUNK-4116, TRUNK-3620)

a bug because it can detect misplaced logical operators and
conditional inversion mistakes in the query, whereas PPCT
and SPCT cannot.

4) Only detected by PPCT and SPCT:
The bugs in this pattern are divided into two types. The first is
‘missing predicates’, which is due to two reasons; the columns
whose values of records cause the bug are selected in the query
or some of the necessary predicates are omitted in the query.
The left side query in Figure 9 shows an actual query with
the issue ‘TRUNK-4116’. Although this query is supposed
to return drug records whosename LIKE %NYQUIL%,
but it returnsnot-retired drug records whosename LIKE
%NYQUIL%. The module causes a bug when it is executed with
retired drug records whose namename LIKE %NYQUIL%.
Therefore, the additional condition ‘this.retired = 0 ’
is necessary. FPCT cannot detect such a bug. Both PPCTand
SPCT can because the former selects the tabledrug , while the
latter selects the column retired of the table drug. We obtained
a similar result for the issue ‘1334’ ofBroadleaf Commerce.
The second type is ‘misused column values’. PPCT and SPCT
detect this type of bug due mainly to two reasons; either the
columns whose values of records cause the bug are selected in
the query or the value of the wrong column is used in the code.
The right side query in Figure 9 shows an actual query with
the issue ‘TRUNK-3620’. This query selectsconcept_id
andanswer_concept from concept_answer . Although
the value of concept_answer should be used in the
code, the valueconcept_id is used instead. The mod-
ule causes a bug when it is executed with records whose
concept_id andanswer_concept have different values
(e.g., non-null values forconcept_id and null values for
answer_concept).

SELECT
…
this.retired,
…

FROM drug this
WHERE
// �this.retired = 0� was redundant !!
this.retired = 0 AND
this.name LIKE %2%

ORDER BY … ;

Fig. 10. Actual query of the issue (TRUNK-2392)

// At least one record obtained by the query can
cause the bug !!
SELECT

…
FROM location_tag_map map0
INNER JOIN location_tag locationta1

ON map0.location_tag_id =
locationta1.location_tag_id
WHERE

map0.location_id = 1;

Fig. 11. Actual query of the issue (TRUNK-4036)

5) Only detected by FPCT and PPCT:
The bugs in this pattern are detected by FPCT and PPCT
mainly because redundant conditions exist in the WHERE
clause. Figure 10 shows an actual query with the issue
‘TRUNK-2392’. Although this query should returnnot-retired
drug records whosename LIKE %2%, it returns alldrug
records whosename LIKE %2%. The module causes a bug
when it is executed withretired drug records whosename
LIKE %2%. FPCT can detect such a bug because it can notice
misplaced logical operators. Similarly, PPCT also can detect
such a bug because the tabledrug selected in the query has
the columnretired , which is referred to in the WHERE
clause.

6) Detected by any of the three testing methods:
The bugs in this pattern are detected by any of the testing
methods mainly because any record in the query causes the
bug. Figure 11 shows the actual query of the issue ‘TRUNK-
4036’. This query should returnlocation_tag records
related with theloation record whoselocation_id =
1. However, the module causes a bug when this query returns
at least onelocation_tag record. Because the records are
prepared using the query, such a bug can be detected with any
of the testing methods. A similar result is obtained for the
issue ‘1310’ ofBroadleaf Commerce.

B. RQ2: How many records are needed to reach 100% SPC
coverage?

To reach 100% coverage forOpenMRS, 619 records for
FPCT, 1643 records for PPCT, and 1437 records for SPCT
are needed (Table V, row 8). Thus, SPCT requires about 2.3
more records than FPCT, indicating that SPCT is more costly.
However, compared to PPCT, SPCT requires fewer records
(0.87 times). For bugs that both PPCT and SPCT detect, SPCT
is more efficient. The results indicate that although PPCT and

SPCT are valuable because they detect bugs not detected by
other methods, their efficiencies could be improved.

C. Limitation

1) Cost Calculation:
We defined the number of records to reach 100% coverage
as the cost. However, for PPCT and SPCT, we need make
additional efforts to set the candidate equivalence classes of the
columns. In our case study, we made very few efforts because
we set them uniformly based on the type of columns. In the
future, we have to conduct some experiments to measure the
additional cost because the equivalence classes of the columns
setting takes some time in practical use.

2) Our Coverage Measurement Tool:
We implemented a coverage measurement tool for PPC and
SPC, but some parts are incomplete.

To generate the coverage criteria in the step 4 in Section
III, our tool analyzes the SQL(SELECT) query to collect the
selected tables, columns, and conditions in the WHERE clause,
but ignores conditions in the JOIN clause. To reduce the cost,
the conditions in the JOIN clause must be collected to remove
parameter combinations that do not satisfy the conditions in
the JOIN clause. Actually, some queries found in the issues
of Broadleaf Commercehad many JOIN clauses, but because
SPCT only used the simple WHERE clause, it required as
many records as PPCT. Furthermore, our tool ignores the
condition between columns such ascolumn1 = column2
in the WHERE clause. When such conditions exists in the
query, focusing on the overlapping equivalence classes should
reduce the costs.

In the coverage measurement in the step 5 in Section III,
our tool inspects which parameter combinations are covered
using the query results. However, it regards binary types and
enumerated types as string types. In order to calculate PPC
and SPC more accurately, both binary and enumerated types
should be processed as their own types.

D. Threats to Validity

In the case study, we manually set the equivalence classes
of the columns based on the types of columns. However, this
may affect the accuracy and costs of our testing methods,
and is a threat to internal validity. In the future, especially
in regression testing, we would like to set the equivalence
classes by analyzing the tendency of the values of columns in
a real database.

The targets in the case study wereOpenMRSandBroadleaf
Commerce, which have about 400KLOC and interact with
about 1000 columns. Although its size is sufficient,Broadleaf
Commercehas fewer bugs thanOpenMRS. Therefore, the
credibility of the results ofBroadleaf Commerceis slightly
lower than that ofOpenMRS, and is a threat to internal validity.
In the future, we would like to conduct a case study on another
version ofBroadleaf Commerce. A threat to external validity is
that our case study is limited to open source software systems
in a single software domain. In the future, we would like to
evaluate our testing methods by applying them to industrial
software with different software domains.

VI. RELATED WORK

Pan et al. proposed a method to generate a database state via
dynamic symbolic execution (DSE) [18][19]. Then they lever-
aged DSE to examine close relationships among host variables,
embedded SQL query statements, and branch conditions in the
source code. They implemented their approach in Pex, which
is a state-of-the-art DSE-based test generation tool. Unlike
their study, which focused on increasing code coverage, our
work focuses on detecting bugs, that are not detected by testing
with the code coverage mentioned in Section II.

Some studies have examined coverage based on an SQL
query. Chays et al. proposed a framework to test database
applications [20][21][22][23] using database schema integrity
constraints, user inputs, and conditions in queries to consider
the state of a database. They also implemented a tool to popu-
late a database with meaningful data that satisfy the database
constraints. Tuya et al. proposed full predicate coverage to test
SQL queries based on modified condition/decision coverage
[7][8]. They focused on the conditions in queries to consider
the necessary database state; this coverage detected misplaced
logical operators or mistakes of conditional inversion. They
also proposed a database shrinking technique by using this
coverage [9]. Although both works focus on the conditions
in the queries, they did not emphasize what is selected in
the queries. However, their works provide insight some when
considering the variations in the records’ values. To detect
more bugs in database applications, we would like to combine
the above techniques with ours.

Tuya et al. have proposed a tool to generate mutants of
SQL database queries to test database applications [24][25].
They proposed four mutation operators for SQL queries:SC,
OR, NL, IR. SC performs mutations on the main clauses,
OR replaces the operators in the conditions,NL handles
null values, andIR replaces identifiers in the query such
as columns and constants. Pan et al. also applied these
mutation operators to transform SQL queries into normal
program codes, and subsequently generated both effective
program inputs and sufficient database states via DSE to kill
mutants [26]. Zhou et al. also proposed a mutation testing
approach to extend these mutation operators and implemented
JDAMA (JavaR⃝Database Application Mutation Analyzer) for
JavaR⃝programs that interact with a database [27]. All of these
work focused on SQL queries to test database applications but
not the combinations of values for columns selected in SQL
queries. Because PPCT and SPCT focus on the variation of
column’s values selected in SQL queries, they can detect bugs
even if some of the necessary conditions are omitted.

Kapfhammer et al. proposed def-use coverage for program
interactions with databases [28]. They mappedcreate, read,
update and delete, which are the four basic functions of
database management systems, into database def-use. They
also implemented a coverage-monitoring tool to measure this
def-use coverage for various granularities [29]. However, this
coverage measures whether defined objects (databases, tables,
columns and records) are used but not the variations in the

record’s values. In contrast, PPCT and SPCT measure the
variety in the record’s values.

VII. C ONCLUSION

To detect more bugs in database applications, we proposed
PPCT and SPCT, which are pairwise coverage-based testing
techniques. Our methods focus on the selected elements in
SQL queries and apply pairwise testing techniques with equiv-
alence classes of columns from user inputs and conditions in
the queries. We also implemented a tool that measures PPC
and SPC as well as automates some of the testing process.
Then we demonstrated their applicability by applying PPCT
and SPCT to two open source software systems, which have
more than 400KLOC and interact with about 1000 columns.
Although PPCT and SPCT currently have higher costs than
existing testing techniques, the case study suggests that their
costs can be further reduced.

To measure the costs of candidate equivalence classes of
columns setting for PPCT and SPCT, we plan to conduct
some subject experiments. Furthermore, we plan to consider
database schema integrity constraints and clustering techniques
for the values in columns in databases studied by Hashimoto
et al. [30] to create initial equivalence classes of columns
automatically for the setting cost reduction. Additionally, we
would like to apply our techniques to industrial products.

REFERENCES

[1] M. Baluda, P. Braione, G. Denaro, and M. Pezzè, “Structural coverage
of feasible code,” inProceedings of the 5th Workshop on Automation of
Software Test (AST), 2010, pp. 59–66.

[2] K. Sakamoto, K. Shimojo, R. Takasawa, H. Washizaki, and Y. Fukazawa,
“Occf: A framework for developing test coverage measurement tools
supporting multiple programming languages,” inProceedings of the
2013 IEEE 6th International Conference on Software Testing, Verifi-
cation and Validation (ICST), 2013, pp. 422–430.

[3] E. Albert, I. Cabanas, A. Flores-Montoya, M. Gómez-Zamalloa, and
S. Gutierrez, “jpet: An automatic test-case generator for java,” inPro-
ceedings of the 2011 18th Working Conference on Reverse Engineering
(WCRE), 2011, pp. 441–442.

[4] K. K. Aggrawal, Y. Singh, and A. Kaur, “Code coverage based tech-
nique for prioritizing test cases for regression testing,”ACM SIGSOFT
Software Engineering Notes (SEN), vol. 29, pp. 1–4, 2004.

[5] E. Juergens, B. Hummel, F. Deissenboeck, M. Feilkas, C. Schlögel,
and A. Wübbeke, “Regression test selection of manual system tests in
practice,” in Proceedings of the 2011 15th European Conference on
Software Maintenance and Reengineering (CSMR), 2011, pp. 309–312.

[6] S. Tokumoto, K. Sakamoto, K. Shimojo, T. Uehara, and H. Washizaki,
“Semi-automatic incompatibility localization for re-engineered industrial
software,” in Proceedings of the 2015 International Conference on
Software Testing Verification and Validation (ICST), 2014, pp. 91–94.

[7] M. J. Suárez-Cabal and J. Tuya, “Using an sql coverage measurement
for testing database applications,” inProceedings of the 12th ACM
SIGSOFT Twelfth International Symposium on Foundations of Software
Engineering (FSE), 2004, pp. 253–262.

[8] J. Tuya, M. J. Suárez-Cabal, and C. de la Riva, “Full predicate cover-
age for testing sql database queries,”Software Testing, Verification &
Reliability (STVR), vol. 20, pp. 237–288, 2010.

[9] J. Tuya, M. J. Suárez-Cabal, and C. de la Riva, “Query-aware shrinking
test databases,” inProceedings of the 2nd International Workshop on
Testing Database Systems (DBTest), 2009, pp. 6:1–6:6.

[10] “Pairwise testing.” [Online]. Available: http://www.pairwise.org/
[11] “Openmrs.” [Online]. Available: http://openmrs.org/
[12] “Broadleaf commerce.” [Online]. Available:

http://www.broadleafcommerce.org/

[13] D. R. Kuhn and M. J. Reilly, “An investigation of the applicability of
design of experiments to software testing,” inProceedings of the 27th
Annual NASA Goddard Software Engineering Workshop (SEW), 2002,
pp. 91–.

[14] “Pairwise independent combinatorial testing tool.” [Online]. Avail-
able: http://blogs.msdn.com/b/nagasatish/archive/2006/11/30/pairwise-
testing-pict-tool.aspx

[15] “Git.” [Online]. Available: https://git-scm.com/
[16] “Jira.” [Online]. Available: https://jira.atlassian.com/
[17] “Sqlfpc - generation of full predicate coverage rules

for testing sql database queries.” [Online]. Available:
http://in2test.lsi.uniovi.es/sqlfpc/?lang=en

[18] K. Pan, X. Wu, and T. Xie, “Generating program inputs for database
application testing,” inProceedings of the 2011 26th IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE), 2011,
pp. 73–82.

[19] K. Pan, X. Wu, and T. Xie, “Guided test generation for database
applications via synthesized database interactions,”ACM Transactions
on Software Engineering and Methodology (TOSEM), vol. 23, pp. 12:1–
12:27, 2014.

[20] D. Chays, S. Dan, P. G. Frankl, F. I. Vokolos, and E. J. Weyuker,
“A framework for testing database applications,” inProceedings of the
2000 ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA), 2000, pp. 147–157.

[21] D. Chays, Y. Deng, P. G. Frankl, S. Dan, F. I. Vokolos, and E. J. Weyuker,
“An agenda for testing relational database applications: Research arti-
cles,” Software Testing, Verification & Reliability (STVR), vol. 14, pp.
17–44, 2004.

[22] Y. Deng, P. Frankl, and D. Chays, “Testing database transactions
with agenda,” inProceedings of the 27th International Conference on
Software Engineering (ICSE), 2005, pp. 78–87.

[23] D. Chays, J. Shahid, and P. G. Frankl, “Query-based test generation for
database applications,” inProceedings of the 1st International Workshop
on Testing Database Systems (DBTest), 2008, pp. 6:1–6:6.

[24] J. Tuya, M. J. Suarez-Cabal, and C. de la Riva, “Sqlmutation: A tool
to generate mutants of sql database queries,” inProceedings of the 2nd
Workshop on Mutation Analysis (Mutation), 2006, pp. 1–.

[25] J. Tuya, M. J. Suárez-Cabal, and C. d. la Riva, “Mutating database
queries,” Information and Software Technology, vol. 49, pp. 398–417,
2007.

[26] K. Pan, X. Wu, and T. Xie, “Automatic test generation for mutation
testing on database applications,” inProceedings of the 8th International
Workshop on Automation of Software Test (AST), 2013, pp. 111–117.

[27] C. Zhou and P. Frankl, “Mutation testing for java database applications,”
in Proceedings of the 2009 International Conference on Software Testing
Verification and Validation (ICST), 2009, pp. 396–405.

[28] G. M. Kapfhammer and M. L. Soffa, “A family of test adequacy
criteria for database-driven applications,” inProceedings of the 9th
European Software Engineering Conference Held Jointly with 11th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering (ESEC/FSE), 2003, pp. 98–107.

[29] G. M. Kapfhammer and M. L. Soffa, “Database-aware test coverage
monitoring,” in Proceedings of the 1st India Software Engineering
Conference (ISEC), 2008, pp. 77–86.

[30] Y. Hashimoto, K. Oshima, H. Danno, R. Mibe, and K. Yamaguchi, “A
proposal of a method to analyze rdb by columns to understand details
of the specification,”The National Convention of IEEJ Electronics,
Information and Systems, pp. 171–175, 2013.

