
Case Study: Project Management Using Cross
Project Software Reliability Growth Model

Kiyoshi Honda∗, Nobuhiro Nakamura†, Hironori Washizaki∗ and Yoshiaki Fukazawa∗
∗Waseda University, 3-4-1 Ohkubo, Shijuku-ku Tokyo, Japan

Email: khonda@ruri.waseda.jp, {washizaki, fukazawa}@waseda.jp
† Sumitomo Electric Industries, Ltd., 4-5-33, Kitahama, Chuo-ku, Osaka, Japan

Email: nakamura-nobuhiro@sei.co.jp

Abstract—We propose a method to compare software products
developed by the same company in the same domain. Our
method, which measures the time series of the number of detected
faults, employs software reliability growth models (SRGMs).
SRGMs describe the relations between faults and the time
necessary to detect them. Although several researchers have
studied cross project defect predictions to determine defect
locations using the features of previous software product’s code
such as lines of codes and complexities, past works on SRGMs did
not compare products or develop comparison methods. Herein
we propose a method to compare SRGMs across products. To
provide managers and developers insight on advances of its
products, our method is applied to the datasets for nine projects
developed by Sumitomo Electric Industries, Ltd. SRGMs based
on person hours are between 13% and 97% more precise than
those based on calendar time.

Index Terms—Software Reliability Growth Model, Faults pre-
diction, Empirical study.

I. INTRODUCTION

Over the past few decades, several companies have em-
ployed software reliability growth models (SRGMs) to evalu-
ate reliability, which is an important component of software [1]
[2] [3] [4] [5]. However, SRGMs have several issues. SRGMs
sometimes misfit the actual data in ongoing developments.
In addition, the results do not always match the developers’
expectations.

If SRGMs misfit tha actual data, the managers and devel-
opers will decide wrong plans, for example stopping testing
early or release software which has not been tested enough.
On the other hand, if the results of SRGMs indicate that the
faults are enough detected or not enough detected contrary to
the managers and developers’ expectations, they will decide
wrong plans too. If software is released with several faults left,
the company which have released it will take time to debug it
or cause damage or affect negatively to its users.

In order to avoid such misfitting and mismatching the
developers’ expectations, we propose a new good accuracy
SRGMs using person hours. We assume that SRGMs based
on calendar time cannot realize accurate predictions, because
many kinds of SRGMs treat calendar time, which includes
holidays and non-testing time and does not reflect the actual
efforts by developers.

A. Research Questions

This study aims to answer the following research questions:

1) RQ1: Do the results from SRGMs based on person hours
differ from those based on calendar time?

2) RQ2: If the results differ, which model more precisely
describes the relation between faults and detection time?

3) RQ3: Are there any metrics that can compare the
progress against other developments?

4) RQ4: If such metrics exist, can they compare the
progress between different developments?

Our contributions are as follows:
• SRGMs based on person hours and calendar time are

compared in nine empirical projects.
• A method to compare SRGMs is derived.
• A method to monitor the progress of a project in person

hours is developed and implemented in test cases.
In this paper, we compared the SRGMs based on person

hours and calender time in nine empirical projects. The results
indicated the SRGMs based on person hours tend to be good
fitting, so using SRGMs based on person hours would make
precise plan.

II. BACKGROUND

Several approaches have been proposed to measure relia-
bility due to its importance when releasing software. Some
approaches model fault growth, which is a type of SRGM.
Software development includes numerous uncertainties and
dynamics regarding development processes and circumstances.
This section explains SRGMs, their uncertainties and dynam-
ics as well as provides a motivating example.

We have proposed a model called the Generalized Soft-
ware Reliability Model (GSRM) to treat the uncertain-
ties and dynamics regarding development processes and
circumstances[6]. Previously, we have predicted the release
times of open source software (OSS) using GSRM [7] and
agile development [8]. Additionally, we have applied GSRM
to company’s datasets [9].

A. Software Reliability Growth Model (SRGM)

This section treats some example software reliability mod-
els, while the next section explains our model. Although
numerous models have been proposed, the most famous is
the non-homogeneous Poisson process (NHPP) model.

Some methods quantitatively assess software reliability
from fault data observed in the software-testing phase using



a software reliability model based on the counting faults
[1] model. Similarly, our approach is also based on the
counting faults model. By counting the faults and measuring
the detection time, a software reliability model is formulated
assuming that fault detection is based on a stochastic process.
The NHPP model assumes that the stochastic process for
the relationship between fault detection and detection time
is a Poisson process. In actual developments, counting faults
predicts the remaining faults and provides an indication about
the end of the development.

First consider the general NHPP model, where the proba-
bility of detecting n faults is described as

Pr{N(t) = n} =
{H(t)}n

n!
exp {−H(t)} (1)

where N(t) is the number of faults detected by time t, H(t)
is the expected cumulative number of faults detected [10].
Assuming that the total number of faults is constant, Nmax,
the number of detected faults at a unit of time is assumed to
be proportional to the remaining faults. These assumptions are
expressed as

dH(t)

dt
= c(Nmax −H(t)) (2)

where c is a proportionality constant. The solution to the above
equation is

H(t) = Nmax(1− exp (−ct)) (3)

This model, which is called an exponential software reliability
growth model, was originally proposed by Goel and Okumoto
[11]. In this paper, we compare our model to this model.

Equation (3) provides an exponential shaped graph. How-
ever, in actual developments the software reliability graph
does not fit the exponential shaped; it usually fits a logistic
curve or Gompertz curve[12], which are more complex than
an exponential shaped graph. Consequently, we propose a new
model that can fit a logistic curve or an exponential shaped
curve for use in actual developments.

Although many software reliability models have been pro-
posed, the most popular is the non-homogeneous Poisson
process (NHPP) model, but a recent study has suggested that
the Logistic model followed by the Gompertz model are the
most suitable with respect to fitness [13]. In this study, we
employ the Logistic model and the Gompertz model using
development data containing the number of faults detected for
a given time. These models are common in Japan.

The Logistic model is expressed by

NL(t) =
Nmax

1 + exp{−AL(t−BL)}
(4)

where NL(t) is the number of faults detected by time t. If
t → ∞, NL(t) becomes Nmax. The parameters, Nmax, AL

and BL can be calculated using R [14], which is a language
and environment for statistical computing and graphics.

The Gompertz model is given by

NG(t) = Nmax exp(−AGBG
t) (5)

where NG(t) is the number of faults detected by time t. If
t → ∞, NG(t) becomes Nmax (0 < BG < 1). The parameters,
Nmax, AG and BG can be calculated using R.

B. Project monitoring

Although multiple methods exist to monitor projects, there
are several concerns in software development. The Engineer-
ing Project Management using the Engineering Cockpit is
one method to manage and monitor project situations [15].
It provides developers and managers with project specific
information.

Nakai et al. studied how to identify the state and the quality
of a project based on goal, question, metric (GQM) [16] and
project monitoring [17]. They employed Jenkins, which is a
continuous integration tool to visualize and collect fault data,
lines of codes, test coverage, etc. Then they evaluated the
project status using the collected data based on the GQM
method.

Ohira et al. developed the Empirical Project Monitor (EPM),
which automatically collects and analyzes data from ver-
sioning histories, mail archives, and issue tracking records
from multiple software repositories [18]. EPM provides graphs
of the collected and analyzed data to help developers and
managers. However, EPM is not applicable to analyze SRGMs
or to visualize the results.

C. Motivating example

Figures 1 and 2 show our motivating examples. Figure 1
indicates that the number of faults based on calendar time,
which includes holidays and non-testing time, does not reflect
the actual efforts by developers. We hypothesize that SRGMs
based on calendar time cannot realize accurate predictions.
Herein the accuracy of a model based on calendar time is
compared to that based on person hours by evaluating nine
projects developed by Sumitomo Electric Industries, Ltd.

Figure 2 shows an example of two fault datasets, where the
x-axis represents the calendar time and the y-axis represents
the number of faults. For comparison, the scales of the x- and
y-axes are the same for Project B and Project E. Therefore,
the total time is longer and more faults are detected for Project
B than Project E.

However, criteria to compare these projects do not exist
because each project depends on its lines of domain, code,
developers, budget, etc. In this paper, we evaluate the fault
density as functions of calendar time, person hours, and
number of tested cases. This evaluation realizes a method to
compare different projects.

III. PROPOSAL TO COMPARE SRGM BETWEEN PROJECTS

We propose an extension of SRGM to cover fault densities
as well as a method to apply the person hours to SRGMs.

A. Extension of SRGM to fault densities

The equation of the Logistic model for fault densities and
rates of used person hours is given by

DL(t
′) =

Dmax

1 + exp{−A′
L(t

′ −B′
L)}

(6)



Date Fault Day

8/May/2015 3 1

9/May/2015 0 2

10/May/2015 4 3

11/May/2015 0 4

12/May/2015 0 5

13/May/2015 0 6

14/May/2015 0 7

15/May/2015 0 8

16/May/2015 0 9

17/May/2015 0 10

18/May/2015 0 11

19/May/2015 2 12

10/May/2015 2 13

Date Fault PH

8/May/2015 3 4.25

9/May/2015 0 0

10/May/2015 4 5

11/May/2015 0 0

12/May/2015 0 0

13/May/2015 0 0

14/May/2015 0 0

15/May/2015 0 0

16/May/2015 0 0

17/May/2015 0 0

18/May/2015 0 0

19/May/2015 2 9.75

10/May/2015 2 12.25

Calendar Day

Person Hour

Stopping 

Tes�ng Holyday

Plot

Plot

T
h

e
 n

u
m

b
e

r 
o

f 
fa

u
lt

s
T

h
e

 n
u

m
b

e
r 

o
f 

fa
u

lt
s

3

3 12

9.25 19 31.25

7
9

1
1

3
7

9
1

1

Fig. 1. Examples of calendar time and person hours.

Fig. 2. Example of a comparison between projects.

where DL(t) is the fault density by the rate of used person
hours t′. If t′ → ∞, DL(t) becomes Dmax. The parameters,
Dmax, A′

L and B′
L can be calculated using R. The equation

of the Gompertz model for fault densities and rates of used
person hours is given as

DG(t
′) = Dmax exp(−A′

GB
′
G
t′
) (7)

where DG(t
′) is the number of faults detected by the rate

of used person hours t′. If t′ → ∞, DG(t
′) becomes Dmax

(0 < B′
G < 1) . The parameters, Dmax, A′

G and B′
G can be

calculated using R.

B. Comparison of projects

Figure 3 overviews our method, which compares the results
of SRGMs between projects with different lines of code,
numbers of test cases, total person hours, and numbers of
faults. Our method has three steps:

1) Divide the number of detected faults by the created lines
of code for all data. Convert the person hours to the rate
of used person hours.

2) Merge all data into one dataset. Rearrange it into chrono-
logical order.

3) Apply SRGM to the new dataset.

We consider the SRGM from the new dataset as a leveled
SRGM of all datasets.

Step 1

Person Hours, Fault

1,1

2,3

5,4

Rate, Density

0.1, 0.01

0.2, 0.03

0.5, 0.04

Step 2

Rate, Density

0.1, 0.01

0.2, 0.03

0.5, 0.04

Rate, Density

0.1, 0.01

0.15, 0.04

0.2, 0.03

Step 3

Rate, Density

0.1, 0.01

0.15, 0.04

0.2, 0.03

0 0.2 0.4 0.6 0.8 1

Fa
u

lt
 d

e
n

si
ty

The rate of used person hours

Model (Gompertz)

10 Person Hours, 100 LOC

Fig. 3. Overview to compare the results of SRGM between projects.

The first step converts the fault data of each project into
the fault density and the rate of used person hours because
the numbers of faults and the terms depend on the project.
For example, consider a scenario where 100 person hours are
required to detect 20 faults in Project 1, but 50 person hours are
necessary to detect 10 faults in Project 2. If only the number of
faults and person hours are treated, the effort of the developers
and the difficulty of project cannot be evaluated. Additionally,
we assume that the fault densities and the rates of used person
hours are values that can be used to compare and monitor
projects because the fault densities values are the same and
the rate of used person hours converge.

The second step merges the converted dataset into one
dataset to create an averaged SRGM. Moreover, to model the
merged dataset, the data is rearranged in chronological order.
This study models the dataset to SRGM by a nonlinear least-
squares method through R.

The third step applies the merged dataset to SRGM based
on the fault densities and the rate of used person hours. The
results indicate the leveled line of development, which can be
used to help managers and developers assess the progress of a
development. If the dataset for a development strays from the
leveled line, it means that the development is not going well
at that time.



IV. EVALUATION AND RESULTS

We evaluated our method via case studies. Then we applied
our proposed method to datasets from nine projects developed
by Sumitomo Electric Industries, Ltd. using the same frame-
work.

A. Evaluation design and result

To answer RQ1 (Do the results from SRGMs based on per-
son hours differ from those based on calendar time?) and RQ2
(If the results differ, which model more precisely describes
the relation between faults and detection time?), we compared
the differences between models based on calendar time and
person hours. Specifically, we applied the Logistic model and
the Gompertz model to nine project datasets using calendar
time and person hours. Then we calculated the residual sums
of square (RSS) for each model and compared the results. RSS
indicates the differences between actual data and a model. A
small RSS value indicates the model is a good fit for the actual
data.

To answer RQ3 (Are there any metrics that can compare
the progress against other developments?) and RQ4 (If such
metrics exist, can they compare the progress between different
developments?), we compared the correlations between the
metrics in the collected datasets, the lines of code that only
developers created, the numbers of faults, the number of test
cases estimated by developers, the number of test cases that de-
velopers tested, calendar time, and person hours. Specifically,
we evaluated the correlations between the metrics and then
applied the Logistic model and the Gompertz models, which
are based on the fault density, person hours, and test cases,
to the calculated RSS for each model. Finally, we compared
the correlation to answer RQ3. Then we compared the RSS
results and interviewed the managers to quantitatively and
qualitatively answer RQ4.

In this evaluation, we collect nine projects data from Sumit-
omo Electric Industries, Ltd. including function points, lines of
code, number of fault, a number of estimated test cases and the
time series of detected fault days, a number of implemented
test cases, and the person hours. These projects are developed
for business applications throgh web from 2013 to 2015 with
a same framework which has been developed by Sumitomo
Electric Industries, Ltd.

1) Comparison between calendar time and person hours:
We compared SRGMs based on calendar time (Figure 4) to
those based on person hours (5). In Figure 4 (5), the x-
axis represents the calendar time (person hours) and the y-
axis represents the number of faults. In Figure 6, the x-axis
represents the number of implemented test cases and the y-
axis represents the number of faults. The legends, which are
the same in Figs. 4 – 6, indicate the nine project datasets,
which are labeled A to I.

Figures 4 and 5 suggest that there is a difference in
understanding the growth of faults between calendar time and
person hours. To clearly understand this difference, we applied
SRGMs (the Logistic model and the Gompertz model) to the
calendar datasets and person hour datasets, and evaluated the

0

T
h

e
 n

u
m

b
e

r 
o

f 
fa

u
lt

s

Calendar �me

Calendar �me and the number of faults

A B C D E F G H I

0
T

h
e

 n
u

m
b

e
r 

o
f 

fa
u

lt
s

Calendar �me

Calendar �me and the number of faults (Enlarged)

A B C D E F G H I

Fig. 4. Relation of the number of faults and calendar time.

0

T
h

e
 n

u
m

b
e

r 
o

f 
fa

u
lt

s

Person hours

Person hours and the number of faults

A B C D E F G H I

0

T
h

e
 n

u
m

b
e

r 
o

f 
fa

u
lt

s

Person hours

Person hours and the number of faults (Enlarged)

A B C D E F G H I

Fig. 5. Relation of the number of faults and person hours.



0

T
h

e
 n

u
m

b
e

r 
o

f 
fa

u
lt

s

Implemented test cases

Implemented testcases and the number of faults

I A B C D E F G H

0

T
h

e
 n

u
m

b
e

r 
o

f 
fa

u
lt

s

Implemented test cases

Implemented testcases and the number of faults (Enlarged)

I A B C D E F G H

Fig. 6. Relation of the number of faults and implemented test cases.

residual sum of squares (RSS), which is typically used to
evaluate the differences between the data and the model (Table
I). The model with the best fit has the smallest RSS. For all
datasets, SRGMs based on calendar time produce larger RSSs
than SRGMs based on person hours.

2) Comparison of values: To evaluate the correlations
between each value, we compared the function points (FP),
lines of code (LOC), number of fault (Fault), fault densities of
LOC (Fault/LOC), fault densities of FP (Fault/FP), number of
estimated test cases (TC), number of implemented test cases
(TC), total calendar time, and total person hours (Table II).
All the values are from the end of the project. Because the
datasets are developed within the same framework, the FP
represents the function points targeting the extended function.
Similar to FP, the developers created the LOC. In Table II, the
Fault correlation values of the person hours, Implemented TC,
and Calendar time are large (0.95582, 0.93433, and 0.92996,
respectively), indicating that the number of faults is strongly
related to person hours, number of implemented test cases,
and calendar time.

3) Compare the projects: We compared the results of
SRGMs based on person hours to SRGMs based on the
implemented test cases for the nine projects (Table III).

4) Rates of used person hours: Figure 7 shows the results
of the model using fault densities and the rate of used person
hours, where the x-axis represents the rate of used person
hours and the y-axis represents the fault density. The legend
indicates the nine project datasets, which are labeled as A to
I.

Fig. 7. Results of the fault densities and the rates of used person hours.

5) Rates of tested cases: Figure 8 shows the results of the
model using the fault densities and the rate of tested cases,
where the x-axis represents the rate of implemented test case
and the y-axis represents the fault density. The legend is the
same as Figure 7.

Fig. 8. Results of the fault densities and the rates of used person hours.

B. Discussion

1) RQ1 (Do the results of SRGMs using person hours differ
from those using calendar time? ): SRGMs based on calendar
time and those based on person hours produce different results,
implying that SRGMs based on person hours only reflect
actual efforts and do not consider non-working time. Table I
shows that all the RSSs for all projects differ based on person
hours and calendar times, demonstrating that SRGMs based on
person hours and calendar time have unique features (RQ1).
However, several projects have similar RSSs between calendar
time and person hours, indicating that developers worked on
the project during holidays and did not stop testing.

2) RQ2 (How do they differ?): SRGMs based on person
hours are more precise than SRGMs based on calendar time.
For all dataset, the RSSs based on person hours are lower
than those based on calendar time. Table I indicates that
Project F (B) has the greatest (smallest) decrease of about
97% (13%) when using person hours. For Project F, the RSS
of the Logistic model in calendar time is 0.08373, and the
RSS of the Logistic model in person hours is 0.002522. The



TABLE I
COMPARISON OF SRGMS BASED ON CALENDAR TIME AND PERSON HOURS

Project RSS (Calendar Time) RSS (Person Hours) Calendar Time / Person Hours
Logistic Gompertz Logistic Gompertz Logistic Gompertz

A 122.99 115.07 26.99 23.06 0.2194 0.2004
B 130.38 100.66 113.5 85.75 0.8705 0.8519
C 12.82 12.65 6.911 6.317 0.5391 0.4994
D 177.1 NaN 35.26 68.97 0.1991 NaN
E 13.4 12.91 11.57 10.95 0.8634 0.8482
F 0.08373 0.2568 0.002522 0.01944 0.0301 0.0757
G 12.82 12.65 6.911 6.317 0.5391 0.4994
H 3993 2460 2936 1408 0.7353 0.5724
I 34.19 28.75 11.13 4.284 0.3255 0.1490

TABLE II
CORRELATIONS BETWEEN EACH VALUE

FP LOC Fault Fault/LOC Fault/FP Estimated TC Implemented TC Calendar time Person Hours
FP 1 0.9008 0.93883 0.12692 -0.1931 0.7648 0.91526 0.93732 0.98159

LOC 0.9008 1 0.77178 -0.12702 -0.30505 0.63311 0.72619 0.81877 0.83476
Fault 0.93883 0.77178 1 0.42154 0.14561 0.77432 0.93433 0.92996 0.95582

Fault/LOC 0.12692 -0.12702 0.42154 1 0.83274 0.43197 0.39555 0.22485 0.20124
Fault/FP -0.1931 -0.30505 0.14561 0.83274 1 0.02498 0.01007 -0.05423 -0.1113

Estimated TC 0.7648 0.63311 0.77432 0.43197 0.02498 1 0.93057 0.76607 0.7607
Implemented TC 0.91526 0.72619 0.93433 0.39555 0.01007 0.93057 1 0.90194 0.92417

Calendar time 0.93732 0.81877 0.92996 0.22485 -0.05423 0.76607 0.90194 1 0.9478
Person hours 0.98159 0.83476 0.95582 0.20124 -0.1113 0.7607 0.92417 0.9478 1

TABLE III
COMPARISON OF SRGMS BASED ON PERSON HOURS AND IMPLEMENTED TEST CASES

Project RSS (Person Hours) RSS (implemented test cases) Person Hours / implemented test cases
Logistic Gompertz Logistic Gompertz Logistic Gompertz

A 26.99 23.06 20.59 15.73 1.170 1.120
B 113.5 85.75 200.6 176.9 1.324 0.427
C 6.911 6.317 6.852 6.200 1.094 0.922
D 35.26 68.97 29.52 25.31 0.511 2.336
E 11.57 10.95 15.33 13.94 1.056 0.714
F 0.002522 0.01944 0.02495 0.06991 0.1297 0.7792
G 6.911 6.317 6.852 6.200 1.094 0.9219
H 2936 1408 4095 2469 2.085 0.3438
I 11.13 4.284 13.27 9.947 2.598 0.3228

value of RSS of person hours divided by calendar time is
around 3%. On the other hand, the RSS of the Logistic model
in calendar time for Project B is 130.38 and the RSS of the
Logistic model in person hours is 113.5. The value of RSS of
person hours divided by calendar time is around 87%. These
results confirm that there is difference between SRGMs based
on calendar time and person hours (RQ2).

3) RQ3 (Do specific metrics evaluate progress?): The
number of faults is significantly related to person hours and
tested cases in the nine project datasets, suggesting that the
person hours required to determine the number of faults can be
modeled. The largest correlation coefficient with the number
of faults is Person Hours, which is 0.95582 followed by
Function Point (0.93883), Implemented test cases (0.93433),
and Calendar time (0.92996). Except for Function Point, we
monitored the values as a time series. Because the Function

Point occurs at the beginning of development, estimating the
number of faults is useful using Function Points. Thus, specific
metrics can be used to evaluate progress (RQ3).Because the
fault density and rates of used person hours are related,
SRGMs based on the faults density, rate of used person hours,
and rate of used tested cases provide better fitting models than
those based on calendar time. Moreover, the nine managers
that we interviewed indicated that the leveled lines should
assist in confirming progress. Table III shows that the fitness
of SRGMs based on person hours and implemented test cases
depends on the project. For Project I, the RSS of the Logistic
model in person hours is 11.13, and the RSS of the Logistic
model in implemented test cases is 13.27. The value of the
RSS of person hours divided by implemented test cases is
around 260%, which is the largest rate in Table III.



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fa
u

lt
 d

e
n

si
ty

The rate of used person hours

Model (Gompertz) B E

Fig. 9. Fault densities and rates of used person hours for project B and E
and the leveled Gompertz model

4) RQ4 (Can progress of projects be directly compared?):
Figure 2 shows an example of the fault densities and the
rates of person hours for Projects B and E as well as the
leveled lines of the Gompertz model through nine projects.
Although the two projects cannot be compared in Figure 9
due to differences in the x- and y-axes, the axes in Figure
2 are the same. Additionally, leveled lines can be prepared
for the projects, demonstrating that the progress of different
projects can be directly compared (RQ4).

Moreover, we have introduced a system for using our
method in Sumitomo Electric Industries, Ltd. and made a
request to several managers and developers for using our
method. After several months, we had interviewed the man-
agers and developers who had used our method for about 3
hours. Our interviews about the models indicate that leveled
SRGMs provide useful information about the progress of the
projects.

C. Limitations

1) Internal validity threats: In the comparison, we used
nine datasets from the same company. Therefore, the data may
contain mistakes or other false elements. Moreover, the data
contains several domains.

2) External validity threats: We only tested SRGMs based
on person hours with nine datasets, which is insufficient to
make generalizations about SRGMs based on person hours.

V. RELATED WORK

Many different types of software reliability growth models
exist. Yamada et al. proposed an extend NHPP model, which
is related to the test-domain dependence [19]. Test-domain
dependent models include the notion that the tester’s skills
should improve by degrees; thus, skills grow over time. The
test-domain-dependent model adds additional assumptions to
the NHPP model.

Fujii et al. developed a quantitative software reliability
assessment method via incremental development processes,
which is a type of agile software development based on
familiar non-homogeneous Poisson processes [20]. Fujii et
al. used both the number of faults and software metrics to
demonstrate software reliability predictions via a case study.

Several researchers study about the cross project fault
prediction and management. Zimmermann et al. studied cross-
project defect prediction models in points of lines of codes and
bugs and other factors [21]. For 12 real-world applications
including open source software and enterprise software, they
ran cross-project predictions using finished projects datasets.
In this paper, we focus on the time series of projects and mon-
itoring the projects in points of person hours and implemented
test cases.

Kuo et al. proposed a new scheme for constructing software
reliability growth models based on NHPP [22]. Their scheme
providea a model which considers testing efforts and fault
detection rates. They estimate the testing efforts and predict
the trends of fault detection rates which can be obtained from
historical records of previous releases or other similar software
projects. Our method did not need the estimation of testing
efforts and used the projects developed by the same company
and using the same framework.

VI. CONCLUSION

Using SRGMs based on person hours, we successfully
modeled nine actual datasets. SRGMs based on person hours
can more precise model the datasets compared to SRGMs
based on calendar time. SRGMs based on person hours are
between 13% and 97% more precise than those based on
calendar time.

Moreover, we propose leveled SRGMs based on the fault
density and the rates of person hours as well as the rates of
used test cases. Our interviews of managers about the models
indicate that leveled SRGMs provide useful information about
the progress of the projects.

REFERENCES

[1] A. Goel, “Software reliability models: Assumptions, limitations, and
applicability,” Software Engineering, IEEE Transactions on, vol. SE-11,
no. 12, pp. 1411–1423, Dec 1985.

[2] S. Yamada, M. Ohba, and S. Osaki, “S-shaped reliability growth
modeling for software error detection,” Reliability, IEEE Transactions
on, vol. R-32, no. 5, pp. 475–484, Dec 1983.

[3] S. Yamada, M. Kimura, H. Tanaka, and S. Osaki, “Software reliability
measurement and assessment with stochastic differential equations,”
IEICE transactions on fundamentals of electronics, communications and
computer sciences, vol. 77, no. 1, pp. 109–116, 1994.

[4] S. Yamada, “Recent developments in software reliability modeling and
its applications,” in Stochastic Reliability and Maintenance Modeling.
Springer, 2013, pp. 251–284.

[5] X. Cai and M. Lyu, “Software reliability modeling with test cover-
age: Experimentation and measurement with a fault-tolerant software
project,” in Software Reliability, 2007. ISSRE ’07. The 18th IEEE
International Symposium on, Nov 2007, pp. 17–26.

[6] K. Honda, H. Washizaki, and Y. Fukazawa, “A generalized software
reliability model considering uncertainty and dynamics in development,”
in Product-Focused Software Process Improvement, ser. Lecture Notes in
Computer Science, J. Heidrich, M. Oivo, A. Jedlitschka, and M. Baldas-
sarre, Eds. Springer Berlin Heidelberg, 2013, vol. 7983, pp. 342–346.

[7] K. Honda, H. Washizaki, and Fukazawa, “Predicting release time based
on generalized software reliability model (gsrm),” in Computer Software
and Applications Conference (COMPSAC), 2014 IEEE 38th Annual.
IEEE, 2014, pp. 604–605.

[8] H. Washizaki, K. Honda, and Fukazawa, “Predicting release time for
open source software based on the generalized software reliability
model,” in Agile Conference (AGILE), 2015, August 2015.



[9] K. Honda, H. Nakai, H. Washizaki, Y. Fukazawa, K. Asoh, K. Takahashi,
K. Ogawa, M. Mori, T. Hino, Y. HAYAKAWA et al., “Predicting time
range of development based on generalized software reliability model,”
in 21st Asia-Pacific Software Engineering Conference (APSEC 2014),
2014.

[10] T. Dohi and N. Nakagawa, “Stochastic reliability and maintenance
modelling,” 2013.

[11] A. L. Goel and K. Okumoto, “Time-dependent error-detection rate
model for software reliability and other performance measures,” IEEE
transactions on Reliability, vol. 3, pp. 206–211, 1979.

[12] M. Anjum, M. A. Haque, and N. Ahmad, “Analysis and ranking of soft-
ware reliability models based on weighted criteria value,” International
Journal of Information Technology and Computer Science (IJITCS),
vol. 5, no. 2, p. 1, 2013.

[13] R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson, and F. Torner,
“Evaluating long-term predictive power of standard reliability growth
models on automotive systems,” in Software Reliability Engineering
(ISSRE), 2013 IEEE 24th International Symposium on, Nov 2013, pp.
228–237.

[14] “The r project for statistical computing,”
http://www.r-project.org/.

[15] T. Moser, R. Mordinyi, D. Winkler, and S. Biffl, “Engineering project
management using the engineering cockpit: A collaboration platform
for project managers and engineers,” in Industrial Informatics (INDIN),
2011 9th IEEE International Conference on, July 2011, pp. 579–584.

[16] V. R. Basili, G. Caldiera, and H. D. Rombach, “The goal question metric
approach,” in Encyclopedia of Software Engineering. Wiley, 1994.

[17] H. Nakai, K. Honda, H. Washizaki, Y. Fukazawa, K. Asoh, K. Takahashi,
K. Ogawa, M. Mori, T. Hino, Y. Hayakawa, Y. Tanaka, S. Yamada,
and D. Miyazaki, “Initial industrial experience of gqm-based product-
focused project monitoring with trend patterns,” in Software Engineering
Conference (APSEC), 2014 21st Asia-Pacific, vol. 2, Dec 2014, pp. 43–
46.

[18] M. Ohira, R. Yokomori, M. Sakai, K.-i. Matsumoto, K. Inoue, and
K. Torii, “Empirical project monitor: A tool for mining multiple project
data,” in International Workshop on Mining Software Repositories
(MSR2004). IET, 2004, pp. 42–46.

[19] S. Yamada, H. Ohtera, and M. Ohba, “Testing-domain dependent
software reliability models,” Computers and Mathematics with
Applications, vol. 24, no. 12, pp. 79 – 86, 1992. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0898122192902316

[20] T. Fujii, T. Dohi, and T. Fujiwara, “Towards quantitative software
reliability assessment in incremental development processes,” in
Proceedings of the 33rd International Conference on Software
Engineering, ser. ICSE ’11. New York, NY, USA: ACM, 2011, pp. 41–
50. [Online]. Available: http://doi.acm.org/10.1145/1985793.1985800

[21] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy,
“Cross-project defect prediction: A large scale experiment on data vs.
domain vs. process,” in Proceedings of the the 7th Joint Meeting
of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on The Foundations of Software Engineering,
ser. ESEC/FSE ’09. New York, NY, USA: ACM, 2009, pp. 91–100.
[Online]. Available: http://doi.acm.org/10.1145/1595696.1595713

[22] S.-Y. Kuo, C.-Y. Huang, and M. R. Lyu, “Framework for modeling
software reliability, using various testing-efforts and fault-detection
rates,” IEEE Transactions on Reliability, vol. 50, no. 3, pp. 310–320,
Sep 2001.


