

The preliminary version of this paper has been presented at the conference [ARES 2014]. In this paper, we added a tool for

creating test and an evaluation of our method.

Information 2016, 7, x; doi:10.3390/ www.mdpi.com/journal/information

Article

Implementation Support of Security Design Patterns
Using Test Templates

Masatoshi Yoshizawa 1, Hironori Washizaki 1, Yoshiaki Fukazawa 1, Takao Okubo 2,

Haruhiko Kaiya 3, Nobukazu Yoshioka 4

1 Waseda University, Tokyo Japan ; E-mail : yoshizawa-masa@asagi.waseda.jp (M.Y.);

E-mail: washizaki@waseda.jp (H.W.); E-mail : fukazawa@waseda.jp (Y.F.)
2 Information Security Division Institute of Information Security, Yokohama Japan; E-mail: okubo@iisec.ac.jp
3 Kanagawa University, Kanagawa Japan; E-mail: kaiya@kanagawa-u.ac.jp
4 GRACE Center National Institute of informatics, Tokyo Japan; E-mail: nobukazu@nii.ac.jp

Abstract: Security patterns are intended to support software developers as the patterns encapsulate

security expert knowledge. However, these patterns may be inappropriately applied because most

developers are not security experts, leading to threats and vulnerabilities. Here we propose a

support method for security design patterns in the implementation phase of software development.

Our method creates a test template from a security design pattern, consisting of an “aspect test

template” to observe the internal processing and a “test case template”. Providing design

information creates a test from the test template with a tool. Because our test template is reusable, it

can easily perform a test to validate a security design pattern. In an experiment involving four

students majoring in information sciences, we confirm that our method can realize an effective test,

verify pattern applications, and support pattern implementation.

Keywords: Security Patterns; Model-based Testing; Test-driven Development; Aspect-oriented

Programming;

1. Introduction

Due to the increasing number of business services on open networks and distributed platforms, preventing

and resolving security issues is vital [1]. Security concerns must be considered in every phase of software

development from requirements engineering to design, implementation, testing, and deployment [2]. However,

addressing all security concerns is difficult due to the sheer volume and the fact that not all software engineers

are security specialists.

Patterns are reusable packages that encapsulate expert knowledge. Specifically, a pattern represents a

frequently recurring structure, behavior, activity, process, or “thing” during the software development process.

Many security design patterns have been proposed. For example, Schumacher et al. presented 25 design-level

security patterns [3]. Because security design patterns are currently abstract descriptions, they are difficult to

implement. Additionally, it is hard to validate security design patterns in the implementation phase because an

adequate test case is required. Hence, a security design pattern can be inappropriately applied, leading to

serious vulnerability issues.

Herein we propose a method to support the implementation of security design patterns using a test template.

Information 2016, 7, x 2 of 15

Our method creates a test template from a security design pattern, which consists of an “aspect test template”

to observe internal processing and a “test case template”. By providing design information in the test template,

a test is created to evaluate the system in the early implementation stage using a tool and fixing the code. As

the test can be executed repeatedly, it can validate whether a security design pattern is appropriately applied in

the implementation phase.

In this paper, we address the following research questions:

 RQ 1: Is our method more efficient at finding defects when implementing a security design pattern

than an existing method?

 RQ 2: Does our method create a more effective test to find implementation defects in a security

design pattern than an existing method?

 RQ3: Compared to an existing method, does our method more effectively create a test to find

implementation defects in a security design pattern and allow for a regression test?

 RQ 4: Is our method more effective at correcting implementation defects in a security design

pattern compared to an existing method?

Our contributions are as follows:

 We create a reusable test template derived from security design patterns.

 Implementation defects in a security design pattern are efficiently determined.

 Our method supports the appropriate implementation of security design patterns.

The remainder of this paper is organized as follows. Section 2 provides the background and problem with

security design patterns. Section 3 describes related works. Section 4 details our proposed method. Section 5

shows a case study using our method. Section 6 discusses the evaluation results. Finally, Section 7 concludes

the paper.

2. BACKGROUND AND PROBLEM

2.1. Security Design Patterns

A security design pattern is a reusable documented security problem and corresponding solution that can be

used to make decisions on the conceptual architecture and detailed design of a software system. In the design

phase of software development, security functions should be designed to satisfy the security properties of the

assets identified in the requirement phase. Security design patterns include “Name”, “Context”, “Problem”,

“Solution”, “Structure”, “Consequence”, and “See Also”. The “Structure” usually contains some design

models described by the Unified Modeling Language (UML). UML is a widely accepted and standardized

language to model software applications [4]. These models may contain constraints on the design in the form

of OCL descriptions. OCL [5, 6] stands for Object Constraint Language, which is a semiformal language that

is used to express constraints and other expressions in UML and other modeling languages. For example in

[7], we successfully defined UML models with OCL descriptions for various security design patterns.

These patterns can be reused in multiple software systems. Figure 1 shows two examples of security design

pattern structures. The Password Design and Use pattern [3, 8] describes the best security practice to design,

create, manage, and use password components. In addition to configuring or managing passwords, engineers

Information 2016, 7, x 3 of 15

and administrators use password constraints to build or select password systems. Figure 2 shows the

corresponding OCL description for Figure 1 specifying the security requirement that should be satisfied in the

structure. The OCL description means that the ID and Password inputted from the login screen must agree

with the ID and Password of the User Data in order for a user to be deemed as a regular user and granted

access to an asset. If this condition is not met, the user is considered a non-regular user and denied access to

an asset. Moreover, Figures 3 and 4 show the expected behavior in the form of a UML communication

diagram.

The Role-based Access Control (RBAC) pattern [3, 8], which is a representative pattern for access control,

describes how to assign precise access rights to roles in an environment where access to computing resources

must be controlled to preserve confidentiality and the availability requirements.

(a)

(b)

Figure 1. (a) Structure of a security design pattern (Password Design and Use pattern) and (b) structure of a security

design pattern (Role-based Access Control pattern)

Figure 2. OCL description (Password Design and Use pattern)

Figure 3. Login behavior (Password Design and Use pattern)

 : mis_actor : Login_UI : password_design_and_use

1: [regular_user == false] login(incorrect_id, incorrect_password)

1.1: check_identification(incorrect_id, incorrect_password)

login_failed

 : Login_UI : password_design_and_use : actor

1: login(correct_id, correct_password)

1.1: check_identification(correct_id, correct_password)

login_successful

Information 2016, 7, x 4 of 15

Figure 4. Behavior to access an asset (Password Design and Use pattern)

2.2. Motivating example of implementation problem

As an example of a pattern application, Figure 5 shows a portion (“login”) of a UML class diagram.

Figure 5. Implementation of the “login” portion of a class diagram for payment processing

 : mis_actor : UI

1: request()

 : Subject_Controller

1.1: request()

 : I&A

1.1.1: use()

 : User_Data

1.1.1.1: identify()

registered_user = false

 : Login_UI

1.1.1.2: [registered_user == false] error()

regular_user = false

 : UI : Subject_Controller : I&A : User_Data

regular_user = true

 : actor

1: request()

1.1: request()

1.1.1: use()

1.1.1.1: identify()

registered_user = true

registered_user = true

 : Asset

1.1.2: [registered_user == true] access_asset_data()

Implementation

Is pattern applied
appropriately?

Information 2016, 7, x 5 of 15

Although the class diagram in Figure 5 appropriately applies the Password Design and Use pattern and the

Prevent SQL Injection pattern [3], it is incomprehensible in the implementation phase. How to implement the

selected pattern is unclear because the relation between the security design pattern and implementation is not

defined. Figure 6 shows part of the implementation of the diagram in Figure 5 with defects, which are a

miswritten SQL description and an omitted escape process. Consequently, the system may be vulnerable.

Thus, the applied pattern must be verified via a test in the implementation phase.

Figure 6. Part of the implementation of the class diagram in Figure 5

A conventional test only detects vulnerabilities due to known coding bugs. It cannot determine if a security

design pattern is appropriately applied, making validation extremely difficult in the implementation phase.

Similar to our work, Munetoh et al. proposed a method to verify the completeness of the implemented

security features [9], but their method is limited to access control for Ruby-on-Rails web applications.

3. RELATED WORKS

3.1. Security Patterns Veirification

Several articles focus on verifying security pattern applications. Abramov at al. have suggested using a

stereotype for a database application to validate security patterns at the design level [10]. Although their

method can validate an applied pattern structurally, it cannot confirm whether the pattern behavior in the

implementation code resolves vulnerabilities to threats. In contrast, our method tests the pattern behavior at

the implementation level.

Dongs at al. have proposed an approach to verify the compositions of security patterns using model

checking [11]. They presented guidelines to specify the behavior of security patterns in the model

specification language. They defined a synchronous message, asynchronous message, and alternative flows of

a UML sequence diagram, which were transformed into CCS specifications. Although this approach formally

defines the behavioral aspect of security patterns and provides transformation scripts to check the properties

of the security patterns by model checking at the model level, it does not conduct an analysis at the

implementation level. Therefore, even if the security patterns application can be verified at the model level, it

does not guarantee that threats and vulnerabilities are resolved in the corresponding code. On the other hand,

our method tests the pattern at the implementation level.

Similarly, Hamid et al. proposed a method to validate the application of patterns at the model level by

UML and OCL [12]. However, it is not applicable to implementation level analysis.

Modeling techniques such as UMLsec [13] and SecureUML [14] have been proposed to address security

Information 2016, 7, x 6 of 15

concerns. UMLsec is defined in the form of a UML profile using standard UML extension mechanisms.

Stereotypes with tagged values are used to formulate the security requirements, while constraints are used to

verify whether the security requirements hold during a specific type of attack. SecureUML focuses on

modeling access control policies and how these policies can be integrated into a model-driven software

development process. It is based on an extended model of RBAC and uses RBAC as a meta-model to specify

and enforce security. RBAC lacks support to express access control conditions that refer to the state of a

system, such as the state of a protected resource. In addressing this limitation, SecureUML introduces the

concept of authorization constraints. Authorization constraints are preconditions for granting access to an

operation. Although these techniques can support modeling security-related concerns in UML models, they

cannot be directly used to check the correctness of security pattern applications at the implementation level.

3.2. Model-based Security Testing

Model-based Testing (MBT) is technique to generate part or all of a test case from a model [15]. A model

is an abstract representation expressing an operation, structure, behavior or any other concern to be realized

by the system or related to the system. Especially in the context of security testing, the process of deriving

tests tends to be unstructured, irreproducible, undocumented, lacking detailed rationales for the test design,

and dependent on the ingenuity of single testers or hackers, motivating the use of explicit models [16].

Tretmans and Brinksma proposed an automated MBT tool [17], while Felderer et al. proposed a method of

Model-based Security Testing (MBST) that relies on models to test whether a software system meets its

security requirements [18]. Moreover, there are many other publications on MBST techniques since MBST is

a relatively new research field with potential in industrial applications [19]. Felderer et al. proposed a

taxonomy for MBST approaches and systematically classified 119 publications using MBST [16]. However,

none of these publications focus on security design pattern applications.

We have developed a formal test template based on MBT. Our test template, which is used to create a

security design pattern, is abstract and reusable. Thus, it can be applied to various systems. According to the

taxonomy proposed by [16], our method can be classified as an approach adopting “Functionality of Security

Mechanisms” as a “Model of system security”, “Threat Models” as a “Security model of the environment”,

“Explicit Test Case Specifications” as “Explicit test selection criteria”, “Prototype” as the “Maturity of

evaluated system”, both “Effectiveness Measures” and “Efficiency Measures” as “Evidence measures”, and

“Executable” as the “Evidence level”.

3.3. Test-driven Development (TDD) for Security

Test-driven Development (TDD) is a software development technique that uses short development

iterations based on prewritten test cases, which define desired improvements or functions. Here our testing

process uses TDD, which requires development prior to writing the actual code [20]. A test case represents a

requirement that the program must satisfy [21]. Although some approach implement security requirements by

adopting TDD [9][22], they do not specifically handle security design patterns and consequently require

developers to manually prepare test cases when applying and testing security design patterns. This is highly

burdensome.

On the other hand, our method focuses on security design pattern applications. Our method uses Selenium

[23, 24] and JUnit [25, 26], which are tools for testing applications. First a test is created where the security

Information 2016, 7, x 7 of 15

requirement of the corresponding pattern is satisfied. Then a test is quickly executed (first test) to detect

vulnerabilities in the code. Afterwards the code is updated so that it passes the test. Finally the test is

re-executed to confirm that the vulnerabilities are resolved.

3.4. Decision Table Testing

A decision table is a tool to capture certain kinds of system requirements and to document internal system

design [27]. The general form of a decision table consists of conditions and actions; “conditions” represent

various input conditions [27] and “actions” are the actions that should be taken depending on the

combination of the input conditions.

Decision tables can serve as a guide to create test cases. Such a black-box test design technique based on

decision tables is called “decision table testing”. Decision table testing is commonly used to research various

software targets, including as web applications [28] and web services [29] at various phases such as

integration testing [30] and system testing [31].

Our method adopts decision tables to describe the specifications of target security design patterns. These

tables are then used to derive the test templates and corresponding test cases.

3.5. Aspect-oriented Programming

Aspect-oriented Programming aims to improve the modularity of software by providing constructs to

modularize the so-called crosscutting concerns, which are concerns where the code representation cannot be

modularized using traditional software development mechanisms [32]. For example, in the pointcut-advice

model of aspect-oriented programming, which is embodied in AspectJ [33], a crosscutting behavior is defined

by pointcuts and advice. A pointcut is a predicate that matches program execution points, which are called

join points, while advice is the action to be taken at a join point. An aspect is a module that encompasses a

number of pointcuts and advice [34].

Montrieux et al. presented a tool that generates Java and AspectJ code from a UML model with a verified

UMLsec property [35]. Although the tool can be utilized for testing at the implementation level, it handles

only RBAC as the target security design pattern, enforcing the security property to be checked. In our method,

developers can register and handle various security design patterns to be tested.

In our method, a test template, which is created via AspectJ, embodies the test, observes the internal

processing, and supports vulnerability validation. Because the internal processing does not display the result

on the screen such as escape processing in Figure 3, it is hard to validate that the processing is executed and

the result is correct using browser-based testing.

4. IMPLEMENTATION SUPPORT OF SECURITY DESIGN PATTERNS

4.1. Overview

Our method verifies the applications of security design patterns and supports their implementation. Figure 7

outlines the process of our method. A test template is derived from a security design pattern by providing

design information. Then the developer executes a test to validate the applied security design pattern in the

implementation phase of software development. Figure 8 shows the entire picture of our method that clarifies

necessary inputs and outputs by using our method’s implementation tool, called TESEM (TEst driven SEcure

Modeling tool). The developer can create a test case by inputting correct input data, incorrect input data, and

Information 2016, 7, x 8 of 15

the testing environment Selenium code into TESEM. Our tool allows a developer who is not a security

specialist to create the test case.

Figure 7. Process of our method

Figure 8. Entire picture of our method

Specifically, our method involves six steps.

Step 0: Create a test template.

A test template is prepared from a security design pattern. The test template consists of an “aspect

test template” and a “test case template”.

Step 1: Embody tests.

A test is embodied by the given design information in a test template.

Step 2: Implement a design.

Although the pattern application cannot be verified, the intended design for the security design

0. Creating test template

1. Embodying test

2. Implementing design

4. Fixing implementation

3/5. Testing implementation

[Test failed]
[Test passed]

Researcher and

developer
Security pattern

Problem

Solution

Context

Implementation

under testing

Developer

with support of

TESEM

Design with

security patterns

Aspect test

template
Test case

template

Test aspect Test case

Instrumented

implementation

1. Generation

by specifying

parameters

2. Implementation

3/5. Instrumentation

by AspectJ 3/5. Testing by

Selenium and

JUnit

Decision

table

• Correct input
• Incorrect input

Selenium code

1. Creation1. Generation

by specifying

parameters

0. Creation

Automated

Manual

Semi-

automated

Legend:

4. Fixing

Information 2016, 7, x 9 of 15

pattern can be implemented.

Step 3: Test and validate the applied patterns.

Based on TDD, a test is quickly executed to validate the applied patterns in the implementation

phase. During this step, concrete test aspects generated from aspect test templates are weaved into

the implementation under testing for the instrumentation purpose.

Step 4: Fix.

The implementation is fixed based on the defects found in Step 3.

Step 5: Re-test and re-validate applied patterns.

The fixed implementation is re-tested to re-validate the applied patterns. If the test is passed

successfully, then the patterns are appropriately applied in the implementation phase. If the test is

failed, Step 4 is repeated until the re-test passes.

4.2. Test Template and Test Case

The test template consists of a test case template and an aspect test template. The former generates concrete

test cases by specifying a few parameters. The latter generates concrete aspects for instrumentation to observe

the internal processing of the code under testing. Testing security design pattern applications often require

such internal data access.

Using our previous method [7], we prepared OCL descriptions for each existing security design pattern as

test oracles. Then we prepared decision tables and the corresponding test template according to the OCL

descriptions.

In our method, templates are prepared and registered to our tool manually for each security design pattern.

After the registration, concrete test cases are generated semi-automatically as the parameters must be inputted.

The generated test cases check the implementation under testing whether its outputs or internal states meet the

expected results stated in the test cases automatically.

The flow to (1) realize a test template and (2) generate test cases is shown below.

(1) For each security design pattern to be tested, we (and the developers) prepare and register a pair of a

test case template and an aspect test template using the three steps below. Once registered, the

templates can be reused for further development projects.

a) Developers create a decision table from the OCL description.

b) Developers create an aspect test template for an internal processing observation from the

decision table and the pattern structure.

c) Developers create a test case template from the decision table and the pattern behavior.

(2) By using TESEM, developers can easily generate concrete test cases as follows:

a) Developers bind the elements constituting the selected security design pattern and class/interface

names in the given design model by specifying a class/interface name for each pattern element as

a parameter.

b) Developers input the Selenium code corresponding to the target security design pattern to be

tested, such as a code behaving as a login function to test the login.

c) Developers specify concrete correct values for the parameters in the test cases, such as concrete

values of ID and password for testing login. Developers also specify concrete incorrect values.

d) Finally, TESEM generates test cases together with concrete test aspects using the parameters and

Information 2016, 7, x 10 of 15

the information specified in the above steps.

4.3. Tool Implementation and Example

In this section, we explain our method’s tool implementation as well as the test template using the

Password Design and Use pattern as a concrete example. We implemented our method into TESEM [7,

36-39], which is a modeling and testing tool originally dedicated only to testing design models. Under the

environment of JUnit together with Selenium, the generated test cases check whether the implementation’s

outputs and internal states meet the expected results described in the test cases.

Figures 1(a), 2–4 depict the Password Design and Use pattern. Table I shows a decision table following the

OCL description.

Table I. Decision Table (Password Design and Use pattern)

Next, an aspect test template in AspectJ is created from the decision table and structure of the pattern to

observe the internal processing. The test should verify the user status (regular or non-regular user) and

whether to allow access. In the structure diagram shown in Figure 1(a), part of “considered regular user or

non- regular user” is the check_identification method of password_design_and_use class. To observe the

internal processing of this point, its pointcut and advice are defined. By observing the internal processing, it is

possible to find a critical defect, which cannot be found using browser-based testing.

Figure 9(a) shows a pointcut executing the consideration of a regular or non-regular user. Figure 9(b)

shows the advice to observe the pointcut result. Similarly, a pointcut and advice are defined for whether to

allow or deny access. In the structure diagram shown in Figure 1(a), whether to grant access is the

subject_function method of the Subject_Control class. Figure 10(a) shows the pointcut to allow or deny

access to an asset. Figure 10(b) shows the advice to determine the pointcut result.

(a)

(b)

Figure 9. (a) Pointcut considering a regular or non-regular user and (b) advice to differentiate between the two types of

users

(a)

(b)

Figure 10. (a) Pointcut judging access to an asset and (b) advice to allow access to an asset

1 2 3 4

Inputted ID agrees with User
Data.

Yes Yes No No

Inputted Password agree with
User Data.

Yes No Yes No

Considered a regular user ×

Can access an asset. ×

Considered a non-regular user × × ×

Cannot access an asset. × × ×

Actions

Conditions

Information 2016, 7, x 11 of 15

Finally, a test case template is created from the decision table and pattern behavior. Figure 4 shows the

behavior of a login to which the Boolean value of a regular_user is returned when an actor inputs an ID and

password into a Login_UI as well as the behavior by which an actor sends a request to the subject_controller.

A test case template performs these behaviors and confirms whether the internal process is correctly

performed as actions of the decision table.

Figure 11 shows part of the test case template used to create a test and define “true_id”, “true_pass”,

“false_id”, “false_pass”, and “request”. Because these templates do not contain a specific value, the defined

terms must be embodied in order to use them as a test.

Figure 11. Part of the test case template

4.4. Limitations

Some expertise about security and OCL may be required to prepare the decision tables and test templates. In

relation to that, there is a possibility that developers prepare incorrect test templates against the original

expectation of the corresponding security design pattern by misunderstanding the pattern. In the future, we

plan to develop a technique and its implementing tool to support transformations from security design patterns

to formal decision tables and templates.

There are two possible situations of false positives: (1) developers apply the pattern to the target

implementation in a slightly different manner from the case assumed in the test templates and test cases, and

(2) developers misunderstand the patterns applied in the corresponding design. Regarding (1), developers

should prepare the corresponding test templates of such variant of the pattern application. Regarding (2), since

TESEM covers both the design phase and the implementation one; it is easy to avoid such misunderstandings

by using our tool beginning in the design phase.

In our method, only security design patterns that are described in general pattern templates with added OCL

descriptions are test targets. As mentioned earlier, we successfully defined UML models with OCL

descriptions for various security design patterns [7]. In the future, we have a plan to prepare a guideline of

describing OCL descriptions for security patterns based on our experience.

 5. Case Study

As a validation, we applied our method to an e-commerce system. Figures 12(a) and (b) show the structure

Information 2016, 7, x 12 of 15

and behavior of the e-commerce system, respectively. “Password Design and Use pattern”, “Prevent SQL

Injection pattern”, and “Role-based access control pattern” are used as the premises.

(a)

(b)

Figure 12. Structure and behavior of a purchasing system

We embody a test case using previously defined design information (e.g., the make_a_payment method of

Payment_Control class due to apply “Password Design and Use pattern” in Figure 12(a)) (Step 1).

Additionally, “select item and push a button” is used to access to an asset in Figure 12(b). Figure 13 shows

part of the created test case. In Figure 13, the “make_a_payment_test” method is embodied in the “request”

method in Figure 11 because the “request” method in the test case template corresponds to the

“make_a_payment_test” method in the system. Stereotypes, such as <<control>> and <<Login_UI>>,

attached to the class diagram show these corresponding relations.

 : actor : Login_UI

1: login()

 : prevent_SQL_Injection

1.1: sanitize_input_data()

 : password_design_and_use

1.1.1: check_identification()

 : User_Data

1.1.1.1: identify()

 : RBAC

1.1.1.1.1: access_control()

 : payment_UI

1.1.1.2: transition()

2: select item()

 : Patment_Control

2.1: make_a_payment()

 : Cart

2.1.1: payment()

Information 2016, 7, x 13 of 15

Figure 13. Part of the created test case

After implementing the design (Step 2), a test is executed to validate the application of the patterns in the

implementation phase (Step 3). Figure 14 shows the test result for the “Password Design and Use pattern”.

Figure 14. Test results (Password Design and Use pattern)

Next, the implementation is fixed (Step 4). The error message in Figure 14 indicates that “whether to allow

or deny access” cannot be determined. Finally, the implementation is retested and the applied patterns are

re-validated (Step 5). Figure 15, which shows the re-test results, confirms that “Password Design and Use

pattern”, “Prevent SQL Injection pattern”, and “Role-based Access Control pattern” are applied appropriately.

Figure 15. Re-test results

6. EVALUATION

6.1. Experimental Overview

To evaluate the Research Questions, we conducted experiments involving four students in information

sciences. We estimated the defect detection and correct implementation of security design patterns by our

technique and an existing method for a login system of an e-commerce system and EMSsec [40]. EMSsec is a

Information 2016, 7, x 14 of 15

student information management system, which was developed as a measure to address a common problem

regarding security and privacy. We injected three defects similar to the ones shown in Figure 3 into these

systems.

As the baseline for the comparison, the existing method is one where only general testing environments,

including JUnit and Selenium, are provided. Additionally, there is no further support such as test case

generation. Thus, the existing method is completely manual.

Students were asked to find and correct the three defects. Our experiment involved the following steps:

Step 1: Complete a questionnaire before the experiment.

Step 2: Listen to an explanation of our method, JUnit, and Selenium.

Step 3: Detect and correct the defects by the existing (our) method.

Step 4: Detect and correct the defects by our (existing) method.

Step 5: Complete a questionnaire after the experiment.

Step 1: Questionnaire before the experiment

To measure the students’ ability, they completed a questionnaire prior to participating in the experiment.

The questionnaire consisted of the following:

 What is your skill level regarding developing a program?

 What is your knowledge level regarding security?

 What is your knowledge level regarding software testing?

 What is your knowledge level regarding web systems development?

Students selected from the following answers: “very high”, “high”, “not high”, and “low”.

Step 2: Listen to an explanation of our method, JUnit, and Selenium.

We explained how to use our method, JUnit, and Selenium.

Steps 3, 4: Detect and correct the defects by the existing method and our method.

Students detected and corrected defects using our method and the existing method. The students were

randomly divided into two groups. The first group of students 1 and 2 used the existing method followed by

our method, while the second group of students 3 and 4 used our method first.

Step 5: Complete the after-experiment questionnaire.

Upon completing the experiment, students completed a questionnaire about their experience. The

questionnaire contained the following three items:

 Which method do you prefer to find defects in the software?

 Which method do you feel is more efficient at finding defects?

 Which method do you prefer to modify defects in the software?

6.2. Experimental Results

The table below shows the result of the before and after questionnaire (Step 1, 5).

Information 2016, 7, x 15 of 15

Table II. Results of the Before and After Questionnaire (Step 1, 5) (VH: very high, H: high, NH: not high, L: low,

 O: our method, RO: relatively our method, RE: relatively existing method, E: existing method)

Students

What is your

skill level

regarding

developing a

program?

What is your

knowledge

level

regarding

security?

What is your

knowledge

level

regarding

software

testing?

What is your

skill level

regarding web

systems

development?

Which

method do

you prefer

when finding

defects in

software?

Which

method do

you feel more

efficiently

finds defects

in software?

Which method

do you prefer

when

modifying

defects in

software?

1 H NH H NH O O O

2 NH L NH NH O O O

3 NH NH NH L O O RO

4 NH H NH NH O O RO

Figures 16 and 17 show scatter plots of the results for each student. Using our method, the detection time

decreased for all students. In addition, Student 2 detected more defects, whereas Students 1, 3, and 4 detected

the same number of defects using both methods. As for the correction time, the second method (i.e. our

method for students 1 and 2, and the existing method for students 3 and 4) required less time regardless of

which method was used.

(a) (b)

Figure 16. Scatter plots of (a) the existing method and (b) our method for the number detected defects and detection time

(a) (b)

Figure 17. Scatter plots of (a) the existing method and (b) our method for the number of corrected defects and correction

time

0

1

2

3

4

0 20 40 60 80 100

N
u

m
b

er
 o

f D
et

ec
te

d
 D

ef
ec

ts

Detection Time (min)

Number of Detection and Detection Time

(Existing Method)

Student 1 Student 2 Student 3 Stundet 4

0

1

2

3

4

0 20 40 60 80 100

N
u

m
b

er
 o

f D
et

ec
te

d
 D

ef
ec

ts

Detection Time (min)

Number of Detection and Detection Time

(Our Method)

Student 1 Student 2 Student 3 Student 4

0

1

2

3

4

0 5 10 15 20 25 30 35 40

N
u

m
b

er
 o

f C
o

rr
ec

ti
o

n

Correction Time (min)

Number of Correction and Correction Time

(Existing Method)

Student 1 Srudent 2 Student 3 Student 4

0

1

2

3

4

0 5 10 15 20 25 30 35 40

N
u

m
b

er
 o

f C
o

rr
ec

ti
o

n

Correction Time (min)

Number of Correction and Correction Time

(Our Method)

Student 1 Srudent 2 Student 3 Student 4

Information 2016, 7, x 16 of 15

6.3. Discussion

Based on the results, we answer our RQs.

RQ 1: Is our method more efficient at finding defects when implementing a security design pattern than

an existing method?

Regardless of whether our method was implemented before or after the existing method, our method

required less time as shown in Figure 16. Thus, we conclude that our method can find implementation defects

more efficiently than the existing method. By focusing on a particular security design pattern implementation,

our method allows test templates to be reused and test cases to be semi-automatically generated; it contributes

to such time reduction.

RQ 2: Does our method create a more effective test to find implementation defects in a security design

pattern than an existing method?

All students successfully detected more defects using our method than the existing method. Moreover,

students 1, 2, and 3 found all three defects with our method, confirming that our method can effectively test

implementation defects.

In our method, test cases are semi-automatically generated from test templates by only inputting the

necessary information for binding class/implementation names in the given design and elements in the

patterns together with correct/incorrect input data and Selenium code. We believe that this feature somewhat

mitigates the likelihood of incorrect test cases. Nevertheless, as we mentioned in the limitations section, there

is a possibility that developers prepare incorrect test templates against the original expectation of the

corresponding security design pattern by misunderstanding the pattern.

RQ3: Compared to an existing method, does our method more effectively create a test to find

implementation defects in a security design pattern and allow for a regression test?

Figures 18 and 19 show the test case developed by Student 1. Figure 18 is the test case, which was

rewritten for every test. Because the test case could not be reused, whether the test results are correct cannot

be confirmed. In contrast, the test case shown in Figure 19 can be reused, allowing the accuracy of the result

to be confirmed. Students 2 and 4 created test cases similar to Figure 18 (Figure 19) when using the existing

(our) method. Using our method, all students were able to run a regression test. From these results, we

conclude that our method can develop a regression test.

Figure 18. Part of the test case for Student 1 using the existing method

Information 2016, 7, x 17 of 15

Figure 19. Part of the test case for Student 1 using our method

RQ 4: Is our method more effective at correcting implementation defects in a security design pattern

compared to an existing method?

Although students 1, 3 and 4 found the same number of corrections using both methods, student 2 was only

able to modify one defect using the existing method, but modified all three defects using our method. These

findings demonstrate that our method can help correct implementation defects of security design patterns for

users with low skills about web systems development compared to the existing method. However, our method

did not shorten the correction time because it is assumed that more time is necessary to infer the correction

contents from the test case generated by a tool automatically.

We believe that the semi-automated detection of implementation defects supports further corrections since

testers or developers can easily confirm whether or not their implementation under testing is truly correct

against security design patterns. However, as mentioned previously, our method does not directly support

defect correction.

6.4. Threats to Validity

In the experiment, we did not verify whether our method is applicable to any type of system. Additionally,

the numbers of security design patterns and developers were insufficient. Hence, it is possible that our method

is not applicable to all security patterns. Although we used representative patterns and a typical model for

software development to demonstrate the usefulness of our method, we need to examine more general patterns

and employ large-scale examples.

7. CONCLUSION AND FUTURE WORK

Because software developers are not necessarily security experts, security design patterns may be

inappropriately applied. Additionally, even if security design patterns are properly applied in the design phase

of software development, threats and vulnerabilities may not be mitigated in the implementation phase. Hence,

Information 2016, 7, x 18 of 15

we propose a support method for security design patterns in the implementation phase of software

development.

Our method offers two significant contributions. First, it can create an effective test to find the

implementation defects of a security design pattern irrespective of the user’s background. Second, compared

to the existing method, our method can help correct defects for users with a low web development ability.

There are several limitations in our method. Some expertise about security and OCL may be required to

prepare the decision tables and test templates. Moreover, there is a possibility that developers prepare

incorrect test templates against the original expectation of the corresponding security design pattern by

misunderstanding the pattern. To mitigate the limitation, we plan to develop a technique and its implementing

tool to support transformations from security design patterns to formal decision tables and templates.

Moreover, as our future work, to evaluate the scope of our method, we intend to perform an experiment

using a system with more complex defects.

Acknowledgement

This work was supported by JSPS KAKENHI Grant Numbers 25330091, 15H02686, 16H02804 and IISF

SSR Forum 2015.

References

1. N. Yoshioka, H. Washizaki and K. Maruyama, “A Survey on Security Patterns” Progress in Informatics,

No.5, pp. 35-47, 2008.

2. PT. Devanbu and S. Stubblebine, “Software Engineering for Security: a Roadmap” The Conference on The

Future of Software Engineering, pp. 227-239, 2000.

3. M. Schumacher, E. Fernandez-Buglioni, D. Hybertson, F. Buschmann and P. Sommerlad, “Security

Patterns”, Wikey, 2006.

4. Object Management Group. Unified Modeling Language (UML) Version 2.5, 2015, Available on line:

http://www.omg.org/spec/UML/

5. Object Management Group. OCL 2.4, 2014

6. J. Warmer and A. Kleppe, “The Object Constraint Language: Precise Modeling with UML,”

Addison-Wesley, 1998

7. T. Kobashi, M. Yoshizawa, H. Washizaki, Y. Fukazawa, N. Yoshioka, H. Kaiya and T. Okubo, “TESEM: A

Tool for Verifying Security Design Pattern Applications by Model Testing,” Proceedings of the 8th IEEE

International Conference on Software Testing, Verification, and Validation (ICST 2015), Tool Track, pp. 13

– 17, April 2015, Graz, Austria

8. Dr. E. Fernandez-Buglioni, “Security Patterns in Practice: Designing Secure Architectures Using Software

Patterns,” John Wiley & Sons, 2013.

9. S. Munetoh and N. Yoshioka, “Model-Assisted Access Control Implementation for Code-centric

Ruby-on-Rails Web Application Development”, The International Conference on Availability, Reliability

and Security, 2013, pp. 350 – 359, 1999.

10. J. Abramov, P. Shoval and A. Sturm, “Validating and Implementing Security Patterns for Database

Applications,” 3rd International Workshop on Software Patterns and Quality (SPAQu), 2009.

11. J. Dong, T. Peng and Y. Zhao, “Automated verification of security pattern compositions,” Information

and Software Technology, Vol.52, No.3, pp. 274–295, 2010.

12. B. Hamid, C. Percebois and D. Gouteux, “Methodology for Integration of Patterns with Validation

Purpose,” European Conference on Pattern Language of Programs (EuroPLoP), pp. 1­14, 2012.

13. J. Jürjens, “Secure Systems Development with UML,“ Springer, 2005.

14. T. Lodderstedt, D.A. Basin and J. Doser, "SecureUML: A UML-Based Modeling Language for

Model-Driven Security," 5th International Conference on The Unified Modeling Language (UML), pp.

426-441, 2002.

15. S.R. Dalal, A. Jain, N. Karunanithi, J.M. Leaton, C.M. Lott, G.C. Patton, and B.M. Horowitz, “Model-based

Testing in practice”, The International Conference on Software Engineering, pp. 285-294.

Information 2016, 7, x 19 of 15

16. M. Felderer, P. Zech, R. Breu, M. Büchler and A. Pretschner, “Model-based security testing: a taxonomy

and systematic classification,” Software Testing, Verification and Reliability, Vol.26, No.2, pp. 119-148,

2016.

17. J. Tretmans and E. Brinksma, “TorX: Automated Model-Based Testing”, The Conference on Model-Driven

Software Engineering, pp. 11-12, 2003.

18. M. Felderer, B. Agreiter, R. Breu and A. Armenteros, “Security Testing by Telling TestStories”, The

conference on Modellierung, pp. 24-26, 2010.

19. I. Schieferdecker, J. Grossmann and M. Schneider, “Model-based security testing,” 7th Workshop on

Model Based Testing, pp. 1-12, 2012.

20. H. Kim, B. Choi, and S. Yoon, “Performance testing based on test-driven development for mobile

applications”, The International Conference on Ubiquitous Information Management and Communication,

2009, pp. 612-617.

21. S. Fraser, D. Astels, K. Beck, B. Boehm, J. McGregor, J. Newkirk, and C. Poole, “Discipline and practices of

TDD: (test driven development) ”, The Conference on Object-oriented Programming, Systems, Languages,

and Applications, pp. 268-270, 2003.

22. Sonia and A. Singhal, "Development of Agile Security Framework Using a Hybrid Technique for

Requirements Elicitation," International Conference on Advances in Computing, Communication and

Control (ICAC), pp. 178-188, 2011.

23. Selenium Available online: http://docs.Seleniumhq.org/

24. A. Holmes and M. Kellogg, “Automating functional tests using Selenium”, In: Agile Conference, p. 6, 2006

25. JUnit Available online: http://junit.org

26. P. Tahchiev, F. Leme, V. Massol and G. Gregory, “JUnit in action”, Manning Publications Co., 2010.

27. L. Copeland, "A Practitioner's Guide to Software Test Design, " Artech House, 2004.

28. G.A.Di Lucca, A.R. Fasolino, F. Faralli, and U. de Carlini, “Testing Web Applications,” 18th International

Conference on Software Maintenance (ICSM), pp. 310-319, 2002.

29. S. Noikajana and T. Suwannasart, “Web Service Test Case Generation Based on Decision Table,” 8th

International Conference on Quality Software (QSIC), pp. 321-326, 2008.

30. J. Hartmann, C. Imoberdorf and M. Meisinger, "UML-Based Integration Testing," ACM SIGSOFT

International Symposium on Software Testing and Analysis (ISSTA), pp. 60-70, 2000.

31. L. Briand and Y. Labiche, "A UML-Based Approach to System Testing," 4th International Conference on

The Unified Modeling Language. Modeling Languages, Concepts, and Tools (UML), LNCS Vol. 2185, pp.

194-208, 2001.

32. S. Endrikat and S. Hanenberg, “Is Aspect-Oriented Programming a Rewarding Investment into Future

Code Changes? A Socio-technical Study on Development and Maintenance Time”, The International

Conference on Program Comprehension, pp. 51 - 60, 2011.

33. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm and W. Griswold, “An overview of AspectJ”, The

Conference on Object-Oriented Programming, pp. 327-354, 2001.

34. É. Tanter, “Execution levels for aspect-oriented programming”, The 9th International Conference on

Aspect-Oriented Software Development, pp. 37-48, 2010.

35. L. Montrieux, J. Jürjens, C.B. Haley, Y. Yu, P.Y. Schobbens and H. Toussaint, “Tool support for code

generation from a UMLsec property,” 31st IEEE/ACM International Conference on Automated Software

Engineering, pp. 357-358, 2010.

36. TESEM Available online: http://patterns.fuka.info.waseda.ac.jp

37. T. Kobashi, N. Yoshioka, T. Okubo, H. Kaiya, H. Washizaki, Y. Fukazawa, “Validating Security Design

Pattern Applications Using Model Testing,” Proceedings of 8th International Conference on Availability,

Reliability and Security (ARES2013), pp.62-71, 2013.

38. M. Yoshizawa, T. Kobashi, H. Washizaki, Y. Fukazawa, T. Okubo, H. Kaiya and N. Yoshioka, “Verification

of Implementing Security Design Patterns Using a Test Template,” 9th International Conference on

Availability, Reliability and Security (ARES2014), pp. 178-183, 2014.

39. T. Kobashi, N. Yoshioka, H. Kaiya, H. Washizaki, T. Okubo, Y. Fukazawa, “Validating Security Design

Pattern Applications by Testing Design Models,” International Journal of Secure Software Engineering,

Vol. 5, Issue 4, pp.1-30, 2014.

40. EMSsec Available online: http://lab.iisec.ac.jp/~okubo_lab/Members/okubo/wiki/index.php?EMSSec

Information 2016, 7, x 20 of 15

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons by Attribution

(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

