
Evaluating Software Product Quality based on
SQuaRE Series

Hidenori Nakai, Naohiko Tsuda, Kiyoshi Honda, Hironori Washizaki, and Yoshiaki Fukazawa
Dept. of Computer Science and Engineering, Waseda University, Tokyo, Japan

Email: {hide-and-seek, 821821}@toki.waseda.jp, khonda@ruri.waseda.jp, {washizaki, fukazawa}@waseda.jp

Abstract—Although the high quality of software is important
for software stakeholders, quality of software products is often
not effectively defined. Some quality models have been proposed,
but these conventional models cannot measure and evaluate
software product quality comprehensively. Moreover, quality
measured and evaluated based on organization-specific quality
models cannot be compared to the quality of other software prod-
ucts. To alleviate this problem, ISO/IEC defined international
standards called the SQuaRE (Systems and software Quality
Requirements and Evaluation) series for comprehensive quality
measurement and evaluation; however, these standards include
ambiguous measurements, making them difficult to apply. In
this paper, we propose a comprehensive quality measurement
framework, which includes a clear measurement plan based
on ISO/IEC 25022 and 250231. We confirmed the usefulness
of our framework by conducting a case study of applying our
framework to a commercial software product. As future work, we
will introduce our framework to various domains. And then, we
revise and refine measurements and evaluation plans to improve
feasibility and usefulness.

Index Terms—Software Quality Management, Quality Assur-
ance, SQuaRE series

I. INTRODUCTION

Software stakeholders (e.g. developers, managers, end
users) require high quality of software products. Although
several works have aimed to identify software quality such
as [15] and [14], the quality of software products is not
comprehensively, specifically, and effectively defined because
previous approaches focused only on certain quality aspects.
Therefore, software project stakeholders can not identify and
understand other aspects of software quality.

Moreover, issues with definitions are obstacles to control
and understand the quality of software products [18]. Since,
the software product quality has subjective component [3],
the evaluation results of quality metrics depend on software
stakeholders.

On the other hand, the ISO/IEC has tried to define the
evaluation methods for the quality of software products and
has provided common standards, called the SQuaRE (Systems
and software Quality Requirements and Evaluation) series.
This series includes a comprehensive quality model, software
product quality characteristics, and quality in use character-
istics. Additionally, this series includes several metrics and
measurements for each quality characteristic.

1This paper is an extended version of a poster ”Initial Framework for Soft-
ware Quality Evaluation based on ISO/IEC 25022 and ISO/IEC 25023”[16]
presented at The 2016 IEEE International Conference on Software Quality,
Reliability & Security (QRS 2016).

Measurement issues and ambiguities about the understand-
ing limit the evaluation methods [6]. In particular, software
quality managers struggle to define the quality of software
products due to ambiguities in the evaluation methods. Ac-
cording to S. Wagner et al.[19], only 28% of companies
apply the ISO/IEC standard to their software products. This is
because the ISO/IEC standard has too general and ambiguous
metrics, measurements, inputs, and outputs to apply practically
to software development project and products [6] [2].

On the other hand, more than 70% of companies apply
their own quality models [19]. Moreover there are various
frameworks such as [21], [22], [23], [24] proposed for quality
evaluation. However, non-standard organization-specific qual-
ity models and frameworks cannot be compared to others
because they are often constructed with different standards
and focus on only the quality characteristics of interest.

Therefore, we propose a comprehensive quality measure-
ment framework that includes clear metrics and a measurement
based on the latest standards ISO/IEC 25022:2016[8] and
25023:2016[9] in the SQuaRE series.

Contributions of this paper include:
• A comprehensive framework for quality measurements

and evaluations based on ISO/IEC 25022 and ISO/IEC
25023

• An evaluation experiment of our framework using a case
study

The remainder of this paper is organized as follows. Section
II details our proposed framework. Section III shows a case
study using our framework. Section IV describes related
works. Finally, Section V concludes the paper.

II. PROPOSED FRAMEWORK

The purposes of our framework are to develop a frame-
work based on an international standard by establishing a
comprehensive framework for all quality (sub-)characteristics
of ISO/IEC 25022 and ISO/IEC 25023, reduce ambiguous
metrics and measurements, and define the inputs and outputs
for quality measurements clearly.

Using our framework, which was developed with input
of the ISO working group members, project stakeholders
can recognize how to measure their own software product
quality, evaluate whether their software product has high/low
quality based on an international standard, identify suffi-
cient/insufficient quality (sub-)characteristics, determine weak
qualities compared to other software products, and develop



Fig. 1. Number of metrics for each quality characteristic

an objective interpretation. The results of a quality evaluation
based on our framework help project stakeholders identify
areas for improvement.

Our framework consists of two parts: ”Product Quality” and
”Quality in Use”. The former contains internal and external
product quality characteristics, metrics, and measurements
based on ISO/IEC 25023, whereas the latter has quality char-
acteristics, metrics, and measurement of quality in use based
on ISO/IEC 25022. Product quality influences quality in use.
That is, quality in use depends on the product quality. Thus,
”Product Quality” measures and ”Quality in Use” measures
are connected. Therefore, if either product quality or quality
in use is absent, the software quality is insufficient.

In our framework, there are 47 product metrics and 18
metrics of quality in use. Figure 1 shows the number of metrics
of each quality characteristic. These metrics cover 51% of the
ISO/IEC metrics.

The overview of procedure to use our framework is shown
in Figure 2. To measure and evaluate the product quality, our
framework requires some information such as manual, speci-
fications, test specifications, and bug information. To measure
and evaluate quality in use metrics, information should be
collected and evaluated using a questionnaire and a user test.
Based on the results, software quality is assessed, identifying
what quality characteristics are sufficient/insufficient from the
viewpoint from the international standards.

A. Product Quality

The product quality indicates the degree of how the required
needs (e.g. software purpose, performance, usability of prod-
uct, and easy maintainability) are satisfied. If this quality is
insufficient, the software product may include incidents, high
costs for development or maintenance, and violations of user
needs. Therefore, product quality should be identified.

The product quality part involves internal/external qual-
ity characteristics and sub-characteristics (e.g., the quality
characteristic is Functional Suitability, and one of its sub-

Fig. 2. Framework overview

Fig. 3. Procedure for product quality

characteristic is functional completeness), metrics, and mea-
surements based on ISO/IEC 25023. There are 47 product
quality metrics. A part of these metrics focuses on the main
functions of the software. The main function means that must-
have functions and the functions described in catalogs.

To measure and evaluate the product quality, our frame-
work requires information from some elements: manuals,
specifications, design, source code, violations of the coding
standard, test specifications, test results, and bug information.
In addition, thresholds are needed for an objective quality
interpretation. These thresholds are defined based on metrics
information from many domain software products. However,
in this research, the initial thresholds are defined based on the
prediction approach [7] and conventional work. The overview
of procedure to measure product quality is shown in Figure 3.

The following steps are used to measure the product quality.

1) Define the quality to be considered by the project
stakeholders.

2) Define the thresholds for the quality metrics in my
framework.

3) List the information for the measurement based on select
documents (e.g., manual, specifications, etc.).

4) Measure and evaluate the quality metrics based on



Fig. 4. Procedure for quality in use

thresholds.
For example, ”Functional Suitability” indicates whether the

software functions satisfy user needs. The lack of functional
suitability means that the software does not perform as the
user intends (i.e., this software cannot satisfy the user needs).
One measure of the characteristic is as follows:

X = 1−A/B

A = Number of functional requirements

not implemented

B = Number of functional requirements

B. Quality in Use

Quality in use indicates the degree that a software product
can satisfy a specific user needs, effectively, efficiently, and
satisfactorily to achieve a user’s goals and mitigate risks in the
context of use. If this quality is insufficient, users tend to be
dissatisfied with a software product, and the number of users
may decrease. Therefore, quality in use should be identified.

Quality in use involves some quality characteristics and their
sub-characteristics (e.g., the quality characteristic is Satisfac-
tion, and one of its sub-characteristic is usefulness), and a
measurement plan based on ISO/ IEC 25022. There are 18
metrics for quality in use.

To measure and evaluate the product quality, our framework
requires some information from experiments: a user test and
a questionnaire. The user test evaluates the effectiveness,
efficiency, and satisfaction. The questionnaire is related to
satisfaction, freedom from risk, and context coverage. It should
be noted that the questionnaire is developed according to
[10] [25], and popular usability measurement scales, SUS [4],
SUMI [11], and NPS [17].

The overview of procedure to measure quality in use is
shown in Figure 4.

The following steps are used to measure the quality in use.
1) Define the software product domain by vendor or third

organization to evaluate the software.
2) Define must-have features in the software domain.
3) Create normal/abnormal tasks based on must-have fea-

tures for user test. In addition, build the questionnaire
considering must-have features.

4) Prepare a test environment based on desired system
requirements. In addition, distribute the questionnaires
to the actual users.

5) Perform a user test and questionnaire.

III. CASE STUDY

To confirm the usefulness of our framework, we applied our
framework to a commercial software product.

A. Design and Result

In the case study, 30 product metrics and six quality in use
metrics were measured. All of these metrics can be measured,
suggesting that project stakeholders can adapt these metrics
and measurements to their own projects.

Additionally, we performed a user test. The list of user test
tasks was developed by its vendor based on their scenario test.
In addition, we developed abnormal tasks based on the task
list. The subjects of the user test are several students belonging
to our laboratory. Because these subjects are not the target of
the software, developers in the vendor helped them perform
user test tasks.

It took 4-6 hours to measure the product metrics and another
2-4 hours to complete the user test. Regarding the metrics,
measurement results of most metrics reached 100%, indicating
that the quality of the target product is fairly good. In the
user test, all tasks were completed; the results reveal several
problems, such as ”There may be some potential bugs.”.

B. Assessment

The vendor of the target product assessed the evaluation re-
sults objectively. The details of the vendor assessment include:
Internal Quality The way that the target of the number of
bugs is defined should be revised and refined.
External Quality Measurement results indicate useful sug-
gestions for improving quality, such as possible refinement of
product testing process.
Quality in Use The result of the user test can help improve
the quality of software products and user satisfaction.

C. Discussion

Our framework collects metrics information based on doc-
uments such as specifications, test designs, and manuals.
However, the format of these documents depends on the
organization or project. Thus, in the case study, some metrics
information is not collected because there is no information
for the metric.

Our framework may be time consuming for project stake-
holders to implement. It is difficult for project stakeholders
to introduce all the metrics and measurements defined in our
framework due to time limitations. Therefore, some metrics
and measurements should be revised to improve the feasibility
of evaluating quality.



IV. RELATED WORK

AENOR provides ISO 25000 Software Product Quality
Certification [1] based on the SQuaRE series. The certification
evaluates maintainability and functional suitability based on
the results of functional tests, source code, and a third party
library. On the other hand, our research not only examine
maintainability and functional suitability but also investigate
other quality characteristics of the SQuaRE series.

In the project Quamoco, a quality meta model was devel-
oped for specific operationalized quality models [20]. Because
Quamoco is used to create an appropriate and introduce-able
quality model based on meta model, it cannot be used to
compare to other software product’s quality.

[13] presented a scheme to identify a suitable quality model
based on the existing quality model’s purpose (e.g., quality
specification, quality measure, monitoring quality, and quality
improvement), object (e.g., product, process, resource), and
quality focus (general or specific). However, unlike our frame-
work, this scheme cannot be used for a quality measurement.

To identify the software quality, some quality models,
quality measurement methods, and metrics have been defined,
such as COQUALMO [5] and HDCE [12]. However, these
models/approaches have only rely on a specific quality focus
and require subjective expert judgments.

V. CONCLUSIONS AND FUTURE WORKS

This research strives to develop a framework based on an in-
ternational standard, propose a comprehensive framework for
all quality characteristics. To evaluate the product quality, we
defined 47 quality metrics and 18 quality in use metrics, and
their clear measurements based on documents, user test, and
questionnaire. Our contributions are (1) defining a framework
for quality measurements and evaluations based on ISO/IEC
25022 and ISO/IEC 25023, (2) establishing a procedure of
using our framework to evaluate the software quality, (3)
incorporating feasible metrics and measurements into the
proposed framework, and (4) demonstrating the effectiveness
of our framework for project stakeholders through the case
study.

The case study is performed for document management
systems with an emphasis on a part of quality characteristics.
To measure and evaluate these quality, metrics information
is collected through documents, vendor input, and a user
test. Although the vendor indicated that the evaluation results
based on our framework is very useful, some metrics and
measurements may be unnecessary for other software domains.
Moreover, a lot of time is needed to measure and evaluate
metrics and quality. Thus, our framework might not have
enough feasibility from the viewpoint of time cost.

As future work, we will introduce our framework to various
domains. And then, we revise and refine measurements and
evaluation plans to improve feasibility and usefulness. Addi-
tionally, we will build the GQM model to combine clearly
the quality characteristics and metrics to clear interpretation
of software quality. Then, we define relationships between

metrics and characteristics obviously, and verify the validation
of these relationships thorough some case studies.

ACKNOWLEDGMENTS

This work has been conducted as a part of ”Research Initia-
tive on Advanced Software Engineering in 2015” supported by
Software Reliability Enhancement Center (SEC), Information
Technology Promotion Agency Japan (IPA).

REFERENCES

[1] Aenor. ISO 25000 software product quality certifica-
tion. http://www.en.aenor.es/aenor/certificacion/calidad/
calidad software 25000.asp.

[2] A. Abran et al. Usability meanings and interpretations in ISO standards.
Software Quality Journal, 11(4):325–338, Nov. 2003.

[3] H. Al-Kilidar et al. The use and usefulness of the ISO/IEC 9126 quality
standard. In Empirical Software Engineering, 2005. 2005 International
Symposium on, pages 7 pp.–, Nov 2005.

[4] J. Brooke. SUS-A quick and dirty usability scale. Usability evaluation
in industry, 189(194):4–7, 1996.

[5] S. Chulani et al. Modeling software defect introduction and removal:
COQUALMO. Technical report, USC-CSSE, 1999.

[6] J. Heidrich et al. Model-based quality management of software develop-
ment projects. In Software Project Management in a Changing World,
pages 125–156. Springer, 2014.

[7] K. Honda et al. A generalized software reliability model considering
uncertainty and dynamics in development. In Product-Focused Software
Process Improvement, pages 342–346. Springer, 2013.

[8] ISO/IEC. ISO/IEC 25022:2016 Systems and software engineering -
Systems and software Quality Requirements and Evaluation (SQuaRE)
- Measurement of quality in use. 2015.

[9] ISO/IEC. ISO/IEC 25023:2016 Systems and software engineering -
Systems and software Quality Requirements and Evaluation (SQuaRE)
- Measurement of system and software product quality. 2015.

[10] J.-Y. Jian et al. Foundations for an empirically determined scale of trust
in automated systems. International Journal of Cognitive Ergonomics,
4(1):53–71, 2000.

[11] J. Kirakowski et al. SUMI: the software usability measurement inven-
tory. British Journal of Educational Technology, 24(3):210–212, 1993.

[12] M. Kläs et al. Managing software quality through a hybrid defect content
and effectiveness model. In ESEM ’08, pages 321–323. ACM, 2008.

[13] M. Klas et al. CQML scheme: A classification scheme for comprehen-
sive quality model landscapes. In Software Engineering and Advanced
Applications, 2009. SEAA ’09. 35th Euromicro Conference on, pages
243–250, Aug 2009.

[14] J. Münch et al. Software project control centers: concepts and ap-
proaches. Journal of Systems and Software, 70(1):3–19, 2004.

[15] H. Nakai et al. Continuous product-focused project monitoring with
trend patterns and GQM. In APSEC ’14, volume 2, pages 69–74, 2014.

[16] H. Nakai et al. Initial framework for software quality evaluation based
on iso/iec 25022 and iso/iec 25023. In QRS, Poster, 2016.

[17] F. F. Reichheld. The one number you need to grow. Harvard business
review, 81(12):46–55, 2003.

[18] A. Trendowicz et al. Model-based product quality evaluation with multi-
criteria decision analysis. CoRR, abs/1401.1913, 2014.

[19] S. Wagner et al. Software quality models in practice - survey results-.
https://mediatum.ub.tum.de/doc/1110601/1110601.pdf, 2010.

[20] S. Wagner et al. The quamoco product quality modelling and assessment
approach. In ICSE ’12, pages 1133–1142, 2012.

[21] H. Washizaki et al. Experiments on quality evaluation of embedded
software in japan robot software design contest. In ICSE, pages 551–
560, 2006.

[22] H. Washizaki et al. A framework for measuring and evaluating program
source code quality. In PROFES, pages 284–299, 2007.

[23] H. Washizaki et al. A metrics suite for measuring quality characteristics
of javabeans components. In PROFES, pages 45–60, 2008.

[24] H. Washizaki et al. Reusability metrics for program source code written
in C language and their evaluation. In PROFES, pages 89–103, 2012.

[25] D. Watson et al. Development and validation of brief measures of
positive and negative affect: the PANAS scales. Journal of personality
and social psychology, 54(6):1063, 1988.


