
Metrics visualization technique based on the origins
and function layers for OSS-based development
Ryosuke Ishizue, Hironori Washizaki

and Yoshiaki Fukazawa
 Department of Computer Science and Engineering

Waseda University Tokyo, Japan
Email: ishizue@ruri.waseda.jp,

{washizaki, fukazawa}@waseda.jp

Sakae Inoue, Yoshiiku Hanai,
Masanobu Kanazawa and Katsushi Namba

Fujitsu Connected Technologies Limited
Kanagawa, Japan

Email: {inoue.sakae, hanai.yoshiiku,
kanazawa.masano, nanba}@jp.fujitsu.com

Abstract—OSS (Open Source Software)-based software
developments tend to have a lot of defects when editing program
source code files that other organizations created. Developments
with complex origins and functional layers are increasing in OSS-
based development. As an example, here we focus on an Android
smart phone development project and propose new visualization
techniques for product metrics based on the file origin and
functional layers. One is the Metrics Area Figure, which can
express duplication of edits by multiple organizations intuitively
using overlapping figures. The other is Origin City, which was
inspired by Code City. It can represent the scale and other
measurements, while simultaneously stacking functional layers as
3D buildings. The contributions of our paper are to propose new
techniques, implement them as web applications, and share the
results of our questionnaire experiment. Our proposed techniques
are useful not only to visualize measured metrics, but also to
improve product quality.

Keywords—metrics; origin; functional layer;

I. INTRODUCTION
Herein we focus on OSS (Open Source Software)-based

software developments because their origins and functional
layers of are becoming more complex. For example, Android
smart phone developments often incur problems because the
base of Android is provided by Platformer as an OSS, which
some developers then use to create their own products. In a
development involving multiple organizations, it is important to
focus on which organization created each program source code
file as files edited by multiple organizations tend to have more
defects than ones edited by a single organization [1].
Additionally, it is important to know which functional layer the
file belongs (e.g., Kernel, Driver, Framework, Application, etc.).

A previous study defined the origin as its creation and
modification history [1]. If the functional layers have different
origins, then development becomes more challenging. Hence,
knowing the origin of a file and its functional layers is useful to
avoid defects. Moreover, this information leads to improved
product quality as product metrics are based on the origin and
functional layers.

As a motivating example, our project involving Android
smart phone development has three development organizations:
Platformer, Chipset Vendor, and Fujitsu Connected
Technologies (Fig. 1). For example, O1, O2, and O3 mean a file

was created by Platformer, Chipset Vendor, and Fujitsu
Connected Technologies, respectively, whereas O12 means a file
was created by Platformer and edited by Chipset Vendor. We
use the seven functional layers known as Android Architecture:
(1) Linux Kernel, (2) Library, (3) Android Runtime, (4) Library
(external OSS), (5) Application Framework, (6) Applications
and (7) Others.

When reviewing software, the metrics of each file are
extremely difficult to understand using tables, bar charts, bar
graphs, or other primitive methods, making it hard to analyze the
origin and functional layer. For example, it is easy to find the
origin of the largest metric with a simple table, but it is
challenging to determine the percentage of the total value of the
organization (e.g., Total of Platformer=O1+O12+O13+O123). In
another example Chipset Vendor edited the files that originated
from Platformer. Moreover, adding a functional layer further
complicates the origin. To help address these issues, we propose
a visualization method called the Metrics Area Figure (MAF),
which shows the measured metrics of each origin using
overlapping circles, rectangles, etc.

Many previous studies have visualized metrics as 2D or 3D
objects. Some even used 3D software visualization as 3D
visualizations can provide more information than 2D
visualizations. An especially famous metrics visualization
technique is Code City, which represents the scale and other
measurements as 3D buildings in a city [2][3]. Inspired by Code
City, we also propose a 3D visualization method called Origin
City (OC), which shows the measured metrics of each origin as
well as shows the functional layers as color-coded stacks.

The contributions of our paper are that we propose : (1) two
new visualization techniques, which are useful to improve the
product quality, (2) MAF, which is useful to indicate the origins
in a development, and (3) OC, which is useful to show the
functional layers in a development.

Fig 1: Origins in our Android smart phone project

II. VISUALIZATION METHOD
We implemented two visualization techniques with canvas

of HTML5 and JavaScript. Figure 2 overviews the system. First,
a user prepares the measurement result as a csv file, which
contains measured metrics (e.g., defects, number of public
methods/fields, global variable, etc.). For visualization, these
metrics must be measurable by a static analysis tool such as
Understand as well as contain a functional layer that can be
classified by the file path (e.g., kernel/*.* is layer of kernel) and
the origin.

To determine the origin of each file, as many directories as
the number of organizations are prepared. The files of each
organization are placed into each directory. The diff command
is used to find the edited and added files. Then the target file is
chosen, and the metrics are measured to visualize the selection
form of the visualization tool. Finally, the results of the
visualized data are shown upon pushing the exec button.

Fig 2: Overview of visualization

Fig 3 : Metrics Area Figure

Fig 4 : Origin City

The procedure to generate MAF and OC with N
organization is as follows. First, there are 2N-1 regions or
buildings in MAF or OC. Each region or building corresponds
to the origins represented by 𝑂𝑥1⋯𝑥𝑛⋯&' , where N is the total
number of organizations and n represents a specific
organization. The value of xn = 0 or n, and is ignored when xn=0.
For example, if there are five organizations, O124 is defined as

N=5: 𝑂𝑥1𝑥2𝑥3&*&+ {x1=1, x2=2, x3=0, x4=4, x5=0} = 𝑂124

A. Metrics Area Figure
MAF expresses the duplication of edits by multiple

organizations intuitively with overlapping figures. To generate
MAF of N organizations, a circle, which has an area equal to
the sum of the measured metrics of origins for x1=1, is initially
painted. Then another circle, which has an area equal to the sum
of the measured metrics of the origins for x2=2, is drawn. The
overlapping area of the two circles must equal the sum of the
measured metrics of the origins for x1=1 and x2=2. Next, if
 3 ≤ N, the following process is repeated for n ≤ N.
1. Choose an intersecting point, which is surrounded by most

of the regions. The surrounding regions can be up to
𝑂𝑥1⋯𝑥(𝑛−1) (e.g., n=3, O1, O2, O12 and outside of figure).

2. From the intersecting point toward each region whose
origin is 𝑂𝑥1⋯𝑥(𝑛−1) , new regions, which have areas equal
to the sum of the measured metrics of the origins for x
equal to the origin of base region plus xn = n.(e.g., n=3,
O13, O23, O123 and O3), are painted.

3. When all regions, which total 2n-1, are painted, n is
incremented.

As a result of repeating the above process, MAF of N
organizations is generated

Figure 3 shows an example of MAF for three organizations.
The red circle denotes the sum of the measured metrics of the
files created by the 1st Dev. organization (O1). The green circle
means the sum of the measured metrics of files created and
edited by the 2nd Dev. (O2), while the blue shape represents the
measured metrics of the files created and edited by the 3rd Dev.
(O3). Note that the blue shape is not a circle because it is
mathematically impossible

To generate this figure, first a red circle is painted. Then a
green circle is developed. The overlapping area of the two
circles is painted in yellow. Next, from one of the intersecting
points, a blue shape is painted outward. Finally, a purple shape,
a light blue shape (O23), and a gray shape (O123) are painted
toward the each region.

B. Origin City
 OC represents the scale, the measured metrics, and the stack
3D buildings simultaneously. OC is depicted by 2N-1 buildings
in 3D space. Each building corresponds to an origin metric.
Additionally, a building’s colors denote the ratio of the
measured metrics values of the functional layers.

 The most important thing is the building position. First, N
buildings whose origins are O1, O2,…, On are placed on a
concentric circle. After that, buildings corresponding to
𝑂𝑥𝑎𝑥𝑏⋯𝑥𝑛 (1≦a<b<n≦N, xa=a, xb=b, xn=n) are placed on the

center of gravity of the figure connecting buildings with xa=a,
xb=b, xn=n. For example, O12 is placed in the middle of the line
connecting O1 and O2. O123 is placed at the center of gravity of a
triangle connecting O1, O2, and O3. O1234 is placed on the gravity
of a rectangle connecting O1, O2, O3, and O4. After all the
positions are determined, the buildings are drawn from the
center. The radius from the center of the buildings is decided to
avoid intersecting each other toward the outside. By repeating
the above process, OC of N organizations is generated.

 Figure 4 shows example of OC with three organizations. The
center building corresponds to O123, and it is surrounded by the
buildings of O1+O2+O3. The O12 building is between the O1 and
the O2 buildings. The building of O13 and O23 are similarly
placed.

III. EXPERIMENT
We verified the effectiveness of our techniques using

Android smart phone projects.

A. Target and Visualization Results
We speculated that our techniques are useful for visualizing

a situation at a particular stage of development or comparing
stages as a development process progresses. In this experiment,
there are three organizations. 1st Dev. is Platformer, 2nd Dev. is
Chipset Vendor, and 3rd Dev. is Fujitsu Connected Technologies.

Figure 5 (left) is an example of MAF, which shows the
number of defects. The big blue region indicates that the number
of defects in the files created by Fujitsu Connected Technologies
is large. Moreover, the red and green circles almost completely
overlap, demonstrating that Fujitsu Connected Technologies
edited many defects. Such analysis makes it easy to intuitively
grasp the origins with many defects. Consequently, developers
know to carefully edit such files.

Figure 6 shows additional examples of MAF. They show the
results of visualizing a series of data for an Android smart phone
project involving the lines of code (LOC). The right example
visualizes newer data than the left. The green circle in the right
is larger than that in the left because the Android version is
updated in the right. Moreover, the overlapping area between
Platformer and Chipset Vendor is smaller in the right than the
left, but the size of the red circle is about the same. Thus, MAFs
help developers review previous projects.

Figure 5 (right) provides an example of OC where the
number of defects is given as measured metrics. Platformer (O1)
and Chipset Vendor (O2) created many more files (site areas)
than Fujitsu Connected Technologies. Moreover, the site area of
O123 the same as O13, but its height is much higher, indicating
that the ratio of defects is greater in O123 than in O13. The
building color of O13 is almost black and red, whereas that of
O123 is almost purple and blue, indicating that the defects in O13
are in low layers (Kernel and HW Library) whereas those in O123
are in high layers (APP and FW).

By such an analysis, it is easier to grasp intuitively the origin
and functional layer with many defects. As a result, developers
are aware to carefully edit such files.

Fig 5 : Example of MAF (left) and OC (right)

Fig 6 : Example of MAF in an old (left) and new (right) model

Fig 7 : Example of OC in an old (left) and new (right) model

Figure 7 shows additional examples of OC using the same
data as Fig. 6. The building of O2 on the right is larger and higher
than that on the left because the Android version on the right has
been updated. Moreover, the black layer of O1 on the right
almost disappears compared to the large black layer of O2 on the
left. Consequently, OC can help developers review and analyze
previous projects.

It is much easier for developers to analyze the measured
metrics based on the origin and the functional layer with MAF
and OC. MAF solves problems that are difficult to grasp using
the measured metrics of an origin that includes multiple
organizations due to overlapping figures. Similarly, the stacks of
colored layers in OC address the issue of complex origins and
functional layers.

B. Experimental Setting for Usefulness
 We asked developers about the usefulness of our
visualization techniques for Android smart phone projects. We
speculated that both visualization techniques are useful for
senior development personnel like project managers and team
leaders to review previous projects and to compare the progress

of a current project. We conducted an experiment to verify this
hypothesis.

This work investigated the following research questions:

RQ1 Is MAF useful to determine the origins in a
development?

RQ2 Is OC useful to determine the functional layers in a
development?

RQ3 Are our new visualization techniques useful to improve
product quality?

RQ4 What is the purpose of our new visualization techniques?
RQ5 Who would find our visualization techniques useful?

To answer these research questions, we implemented a
questionnaire about our new visualization techniques.

Table 1 shows the 13 questions about the awareness of
metrics, origins, and functional layers as well as the 4 questions
about which method provides the best visualization. Q1 to Q13
are evaluated on a four-level scale: Very much, Somewhat, A
little, and Not at all. Q14 to Q17 are also answered on a four-
point scale: Table, Pie/bar Chart, MAF, and OC.

We implemented a questionnaire, and 18 people belonging
to an Android smart phone development project completed it.
They were managers, leaders, and various other project
members (designer, reviewer, tester, programmer, etc.).

TABLE I. QUESTIONS

Q Question sentence
1 Are you usually aware of the origin?
2 Are you usually aware of the metrics?
3 Are you usually aware of the metrics for each origin?

4 Are you usually aware of the metrics for each functional
layer?

5 Do you feel that MAF is useful for awareness of the
origin?

6 Do you feel that MAF is useful for awareness of the
metrics?

7 Do you feel that MAF is useful for awareness of the
metrics for each origin?

8 Do you feel that OC is useful for awareness of the
metrics?

9 Do you feel that OC is useful for awareness of the
metrics of each functional layer?

10 Do you feel that MAF is useful to improve product
quality?

11 Do you feel that OC is useful to improve product
quality?

12 Do you feel that MAF is useful for your work?
13 Do you feel that OC is useful for your work?
14 Which method is the best to grasp the detailed value?
15 Which method is the best to grasp the trend of the value?

16 Which method is the best to grasp the value by functional
layer?

17 Which method is the best to grasp the value by origin?
“Q” means “Question number”. Including the unanswered

C. Experimental Results of Usefulness
 Figure 8 (left) and Table 2 summarize the results. Figure 8
(right) and Figure 9 show the results by the role of the
participants.

 RQ1: Q5 to Q7 indicate that about 70-80% of the
respondents feel our new visualization techniques are useful for
improving the awareness of metrics based on the origin. As
expected, most feel that MAF is useful to understand the origin
(Q7).

 RQ2: Q4 shows that less than 50% of developers are aware
of the metrics and the functional layers. However, Q8 to Q9
show that about 70-80% of the people feel our new visualization
techniques are useful for improving the awareness of the
functional layers.

RQ3: Q10 and Q11 confirm that more than half of the
participants feel that both methods are useful to improve
product quality.

Fig 8 : All responses to the questionnaire (left),

Managers’ responses to the questionnaire (right)

Fig 9 : Leaders’ responses to the questionnaire (left),
Members’ responses to the questionnaire (right)

TABLE II. RESULTS OF THE PURPOSE OF THE EXPRESSION METHOD

Q
Answerer [people]

Table pie・bar	chart MAF OC

14 11 5 0 0
15 1 5 7 3
16 1 2 3 10
17 1 1 6 6

“Q” means “Question number”, and includes unanswered questions.

 RQ4: According to Table 2, tables, pie and bar charts are
more useful than our method to grasp the detailed value (Q14),
but more people think that MAF is the best method to grasp the
trend of a value (Q15). Moreover, as expected, 63% participants
feel that OC is better to grasp the value by functional layer (Q16).
Surprisingly, OC is as good as MAF to grasp the values of the
origins (Q17). These results indicate that our proposed
techniques are very effective for visualizing the measured
metrics based on the origin and functional layers.

 RQ5: Figure 8 (right) and Figure 9 show the questionnaire
results by position of the participant. Managers have more
positive answers than leaders, while leaders have slightly more
positive responses than members. Thus, it can be inferred that
our methods are more useful for management because managers
generally have more management tasks than leaders, while
leaders have more tasks than members.

D. Threats to Validity
The questionnaire was carried out after a demonstration for

developers. Therefore, the results may change after developers
actually use our visualization tool in their development works.
This is a threat to the internal validity.

These results are from one group in one company. Some of
participants were already familiar with metrics, origins and
functional layers. If we repeated this experiments with another
group or organization unfamiliar with these concepts, the
results may differ. This is a threat to the external validity.

IV. RELATED WORK
In this section, we describe related works about origins,

Code City, and metrics visualization software in general.

S. Sato et al. looked at the effects of organizational changes
on product metrics and defects [1]. They analyzed an open
source projects to investigate the relationships between the file’s
creation and modification history and metrics. Then they defined
a file’s origin as its creation and modification history. Our
proposed visualization techniques, especially MAF, are based
on this concept.

Richard Wettel and Michele Lanza presented a 3D
visualization approach, which gravitates around the city
metaphor [2][3]. Their goal was to give the viewer a sense of
locality to ease program comprehension. OC is inspired by Code
City. Buildings or city-lots in Code City represent the context of
software, such as packages and classes. The building height
expresses its measured metrics. In contrast, buildings in OC
represent the origins. Moreover, the building is composed of a
color-coded stack, which denotes the functional layers.

There are many studies on the visualization of software. P.
Caserta et al. surveyed 2D and 3D visualization techniques
based on statistical aspects of software and its evolution [4]. 3D
software visualization like a city has a decent history. C. Knight
et al. proposed Software World to create graphical abstractions
of Java source code, which was the starting point of 3D software
visualization [5]. J. I. Maletic et al. visualized UML class
diagram in the form of layered 3D objects [6]. Similarly, OC is
based on layered objects in 3D; however, it is dedicated to the
visualization of origins. T. Panas et al. presented 3D City, which
uses a city metaphor for software maintenance costs. As a result,

their visualization technique expresses dangerous source code as
an old or collapsed building [7]. Such methods can be applied to
our techniques for additional expressions to represent the
severity of defects. Although we implemented our tool as a web
application, F. Fittkau et al. presented ExplorViz, which models
live program traces with a web-application utilizing WebGL [8].
K. Kobayashi et al. proposed SarF Map to visualize features and
layers [9]. G. Langelier et al. proposed a metrics visualization
technique named VERSO in which the graphical properties of
buildings are height, color, and angle [10]. The idea of using
colors to represent properties is similar to our approaches; if we
need to represent more properties at the same time, we could
also use angles. Similar to MAF, H. Byelas et al. developed the
area of interest, which expresses UML elements of shared
properties by overlapping figures, which are colored like a
contour diagram [11][12].

V. CONCLUSIONS
We propose two visualization techniques: MAF and OC.

The former helps grasp the measured metric of each origin,
while the latter helps grasp the measured metrics of each
functional layer. These new methods are more efficient than
primitive methods, such as tables, bar charts, and pie charts.
Additionally, many developers indicated that the proposed
method improve the product quality.

In the future, we intend to investigate whether these methods
can improve product quality by a continuous experiment. We
also plan to refine our visualization tool. For example, our
visualize application currently supports the function layer for the
Android architecture only, but we would like to support
additional architectures. Furthermore, as we improve and
introduce more visualization methods, we would like to create a
tool that collects all information about quality management like
a dashboard.

REFERENCES
[1] S. Sato, H. Washizaki, Y. Fukazawa, S. Inoue, H. Ono, Y. Hanai, & M.

Yamamoto, "Effects of organizational changes on product metrics and
defects," APSEC 2013, 2013.

[2] R. Wettel and M. Lanza, “Visualizing Software Systems as Cities,”
VISSOFT 2007, 2007.

[3] R. Wettel, M. Lanza, and R. Robbes, "Software systems as cities: a
controlled experiment," ICSE 2011, 2011.

[4] P. Caserta, O. Zendra, "Visualization of the Static Aspects of Software: A
Survey," Visualization and Computer Graphics, IEEE Transactions on,
On page(s): 913 - 933 Volume: 17, Issue: 7, 2011

[5] C. Knight and M. Munro, “Virtual but visible software,” IEEE Int. Conf.
on Info. Visualisation, 2000.

[6] J. I. Maletic, J. Leigh, and A. Marcus, “Visualizing software in an
immersive virtual reality environment,” ICSE 2001, 2001.

[7] T. Panas, R. Berrigan, and J. Grundy, “A 3D metaphor for software
production visualization,” IEEE Int. Conf. on Info. Visualisation, 2000.

[8] F. Fittkau, J. Waller, C. Wulf, and W. Hasselbring, “Live trace
visualization for comprehending large software landscapes: The
ExplorViz approach,” VISSOFT 2013, 2013.

[9] K. Kobayashi, M. Kamimura, K. Yano, K. Kato, & A. Matsuo, "SArF
map: Visualizing software architecture from feature and layer
viewpoints," ICPC 2013, 2013.

[10] G. Langelier, H. Sahraoui, and P. Poulin, “Visualization-Based Analysis
of Quality for Large-Scale Software Systems,”ASE 2005, 2005.

[11] H. Byelas and A. Telea, “Visualization of Areas of Interest in Software
Architecture Diagrams,” Symp. Software Visualization, 2006.

[12] H. Byelas and A. Telea, “Visualizing Metrics on Areas of Interest in
Software Architecture Diagrams,” Proc. Pacific Visualization Symp.,
2009.

