

Impact of Using a Static-type System

in Computer Programming

Harlin Ismail Rizky

Computer Science Department

Waseda University

Tokyo, Japan

mayharlin@fuji.waseda.jp

Hironori Washizaki

Computer Science Department

Waseda University

Tokyo, Japan

washizaki@waseda.jp

a

Yoshiaki Fukazawa

Computer Science Department

Waseda University

Tokyo, Japan

fukazawa@waseda.jp

Abstract—Static-type systems are a major topic in

programming language research and the software industry.

Static-type systems should reduce the development time and

increase the code quality. Additionally, they are predicted to

decrease the number of defects in a piece of code due to early error

detection. However, there are only a few empirical experiments on

the possible benefits of the static-type system in programming

activities. This paper describes an experiment that tests whether

static-type systems help developers create solutions for certain

programming tasks. The results indicate that although the

existence of a static-type system has no positive impact when

subjects code a program from scratch, it does allow more errors in

program debugging to be fixed.

Keywords—component; static-type systems, programming

language, empirical study, program debugging

I. INTRODUCTION

Type systems are generally formulated as collections of rules
to check the consistency of programs. This kind of checking
exposes not only trivial mental slips, but also deeper conceptual
errors, which are frequently manifested as type errors. A
programming language can be divided into several categories as
shown in Table I [1].

TABLE I

PROGRAMMING LANGUAGE CLASSIFICATION

 Statically checked Dynamically checked

Strongly typed

ML, Haskell, Pascal

(almost), Java (almost)
Lisp, Scheme

Weakly typed C, C++ Perl

The traditional, simplified, definition of dynamic-type
languages is that they do not enforce or check type safety at the
compile-time (as opposed to a static-type language), but defer
such checks until the run-time. While factually true, this
definition leaves out what makes dynamic-type languages
interesting—for example, they lower development costs and
provide the flexibility required by specific domains such as data
processing [3].

It should be noted that since there is no central authority
defining dynamic-type languages, such languages vary greatly.
Nevertheless all such languages share a great deal in common.
In contrast to dynamic-type programming languages, static-type
programming languages do type checking (the process of

verifying and enforcing type constraints) at the compile-time as
opposed to the run-time.

There is a long, ongoing debate about the potential strengths
and weaknesses of static- and dynamic-type systems in software
development. Although many authors claim that static-type
systems reduce the amount of time required to develop a
program and consequently, improve software quality, others
hold the opposite view.

Static-type checking allows early detection of some
programming errors. Errors that are detected early can be fixed
immediately, rather than lurking in the code to be discovered at
a later time when the programmer may be busy with something
else—or even after the program has been deployed [1]. When a
type system is well designed, type checking can capture a large
fraction of routine programming errors, eliminating lengthy
debugging sessions [5].

However, current static-type systems in mainstream object-
oriented languages have little expressive power. For example,
although they prevent users from adding a string to a bool, they
do not prevent them from accessing the first element of an empty
list, creating off-by-one errors, or using null pointers. In fact,
static-type systems cannot detect most common programming
errors [3]. For such systems to work, developers must spoon-
feed the types during their development. Additionally, any error
caught by type checking will be found easily when reasoning
about a specification. However, large specifications are seldom
verified, and type checking can catch such errors that would
otherwise go undetected [4].

This paper contributes to the discussion with a controlled
experiment that empirically investigates possible conditions
when developer should use static-type systems and potential
advantages of using such systems. The experiment in this paper
is built to test the hypothesis that static-type programming
languages decrease development time and consequently enable
developers to create better solutions for certain programming
tasks as well as debugging certain program codes. Specifically
this paper examines the following two research questions:

RQ1) How do static-type systems affect the development of
specific programming tasks when developers code a program
from scratch?

RQ2) How do static-type systems affect program
debugging?

The experiment reveals that subjects who used a static-type
system had a significant positive impact for debugging tasks,
especially for encryption programs with many data types. On the
other hand, when developers coded a program from scratch, a
significant difference was not observed between static- and
dynamic-type systems. The measurements are based on the
number of requirement points that are successfully achieved and
the number of fixed errors.

Section II briefly discusses related works in the area of
empirical studies on type systems. Section III describes the
initial considerations of the experiment and programming tasks
used in the experiment as well as threats to validity. Then section
IV shows the results by describing the measured data. Finally,
section V concludes the paper.

II. RELATED WORKS

To the best of our knowledge, only a few works are
published in the area of empirical evaluations of type systems.
The first one is by Prechelt and Tichy [7], which concentrates on
the impact of static-type checking in procedure arguments. Their
experiment suggested that for many realistic programming tasks,
type checking of interfaces improves both productivity and
program quality. However, in another paper [6], which
compares seven programming languages, Prechelt showed that
programmers who used a scripting language (dynamic-type)
needed less than half the time to finish the experimental task
compared to those using a static-type language.

In a different experiment, Hanenberg [10] showed a negative
impact for a static-type system in one task and no significant
difference in the other. The author measured two different
points: the development time required to create a minimal
scanner program and the quality of the resulting software
measured by the number of successful test cases. Another
experiment performed by Hanenberg, which focused on the
relationship between type casting and development time [11],
revealed a positive impact for a dynamic-type language.
However, a positive impact could not be measured for non-
trivial programming tasks.

A study on the Rosetta code, which is a code repository of
solutions for common programming tasks in various languages,
concluded that strongly typed languages are significantly less
prone to runtime failures than interpreted or weakly typed
language because more errors are caught at the compile-time.
Nevertheless, these works referred to run-time failures or errors
that make a program terminate (including inputs that cause a
program to malfunction) or unable to run rather than using a set
of test cases or testing based on specific requirements
(black/white box testing) [9].

A qualitative study on the Ruby programming language
carried out by Daly et al. [8] suggested that, at least in the
specific setting of the experiment, the benefit of the type of
system could not be shown.

In a paper entitled Popularity, Interoperability, and Impact of
Programming Languages in 100,000 Open Source Projects[12],
the authors investigated 100,000 open source projects available

on GitHub and found no correlation between programming
language employed and the number of issues listed on the bug
tracker.

III. EXPERIMENT DESCRIPTION

A. Initial Considerations

Whether static-type systems reduce the development time
and produce a better output remains controversial. For example,
static-type systems have increased development time due to type
casting. The intent of the experiment is to check whether static-
type systems help programmers code a solution from scratch and
debug programs as well as identify under what conditions static-
type systems are beneficial with regards to the number of
fulfilled requirements and the number of fixed errors measured
by manually prepared test cases.

We divided the experiment into two sessions. In the first
session, subjects were asked to code a program from scratch,
while in the second session they were asked to fix several errors
in a given program code.

The day before the experiment, the subjects were given the
program requirements, which included a demo video showing
how the finished program should look. Therefore, during the
experiment, the subject knew what to do and what functions or
procedures were necessary to complete the tasks.

B. Environment and Measurement

The subjects were allowed to select their own code editor

because we assumed that using a familiar development

environment would produce a better code. Although the

development environment and the code editor employed in the

coding activity may affect the productivity, the experimental

setup minimized the impact. First, the experiment requires a

relatively small number of classes and procedures. Second, the

auto-complete feature is not very useful in the experimental

tasks.
We measured the number of achieved requirement points

and fixed errors by running several test cases on the programs
created by the subjects.

C. Programming Tasks

In the first session of this experiment, 14 subjects were asked
to write 2 kinds of programs: a simple validation program and
an encryption program. The main difference between these two
is that one involves considerably more data types and requires
more type casting. Each program had 7 requirement points
(features) that must be implemented. Details of the programing
tasks include:

 Simple program validation task requires the subject to
create a form with several textboxes and apply a validation
to each textbox. Examples are username, password, phone
number, and e-mail address validation.

 Encryption program task requires the subject to create a
simple algorithm to encrypt and decrypt a text file and

validate whether the target file is made by the same
program by placing a specific signature.

D. Experiment Execution

The experiment was performed with 14 subjects, mostly
Computer Science graduates who were IT-professionals and
graduate school students. Half were assigned to the static-type
group and the other half to the dynamic-type group.

We divided the experiment into two sessions with a long
break between the sessions. Each session was 90 minutes. The
first session (coding) included two tasks: a simple validation
program followed by an encryption program. Each subject had
45 minutes to complete a task and did not have a break between
tasks. In the second session (debugging), the target program was
similar to the program the subjects created in the first session.
However, this time subjects were asked to fix errors in the given
program code. Errors included a semantic error, a logical error,
and a defect error related to the software requirements.

After the experiment, we asked several subjects to provide
comments regarding the experiment and what was needed for a
future experiment with an increased number of subjects and
more diverse programming tasks.

E. Threats to Validity

As with any empirical study, this study has a number of
potential threats to validity, including a small number of
subjects, small programming tasks, and an artificial
development environment. However, it should be emphasized
that while a small programming task might not represent a real-
world programming task, a large programming task has other
factors that must be taken into account.

Another possible threat to validity is developer knowledge.
Although we used only Computer Science graduates, we did not
interview the subjects prior to experiment. Hence, there might
be a gap in the subject’s coding capabilities. Nonetheless, we
also realize that there is not a well-accepted standard to classify
whether someone is a good or bad software developer or to
indicate if one subject is equal to another.

IV. RESULT AND ANALYSIS

The experiment results and analysis are presented by giving
descriptive statistics followed by significance tests to verify
whether there is a significant difference between static- and
dynamic-type solutions.

Figure 1. Number of Fulfilled Requirement Points in the Coding Session

Figure 2. Number of Fixed Program Errors in the Debugging Session

A. How do static-type systems affect the development of

specific programming tasks when developers code a

program from scratch? (RQ1)

Figure 1 shows that a gap does not exist between solutions
written in a static- and a dynamic-type system with regards to
the number of achieved requirement points. This also applies to
the result of the encryption program.

Furthermore, we used Wilcoxon Rank Sum Test for
independent samples to determine whether there is a significant
difference between the number of fulfilled requirement points
by type. Since the number of samples of static- and dynamic-
type solutions is equal (n1=n2=7) for both the simple validation
program and the encryption program, we chose 36 [2] as the
critical value (Wcrit using α = 0.05 two tail). Because the
Wilcoxon Rank Sum values (W) are 46 and 50 for the simple
validation and the encryption program, respectively (Table II),
we cannot reject the null hypothesis. Thus, for code written in
the scratch tasks, both type systems produce similar results.

TABLE II

WILLCOXON RANK SUM VALUE OF PROGRAM SOLUTIONS

 N
Type

Systems

Simple Program Encryption Program
Mean

Rank

Sum

Rank

Mean

Rank

Sum

Rank

Session 1

Code from

scratch

7

Static 8.43 59.0 7.86 55.0

Dynamic 6.57 46.0 7.17 50.0

Session 2

Debugging
7

Static 9.93 69.5 10.36 72.5

Dynamic 5.07 35.5 4.64 32.5

B. How do static-type systems affect program debugging?

(RQ2)

Figure 2 shows the number of successfully fixed errors in the
simple validation program. It shows that there is a visible gap
between the static- and dynamic-type solutions. This gap is
larger for the encryption program solutions.

Again, we used the Wilcoxon Rank Sum Test for
independent samples to test whether there is a significant
difference between the number of successfully fixed errors in the
debugging session. Since the static- and dynamic-type solutions
have the same number of samples (n1=n2=7) for both the simple
validation program and the encryption program, we chose 36 [2]
as the critical value (Wcrit using α = 0.05 two tail). The Wilcoxon
Rank Sum value for the simple validation program solutions (W)
is 35.5, which is slightly lower than the specified critical value.
For the encryption program solutions, the W value is 32.5 (see
Table II). Therefore, there is a meaningful difference in the
number of fixed errors between static- and dynamic-type
solutions.

In conclusion, we reveal that a static-type system enhances
the effectiveness of developers in program fixing or program
debugging. Nonetheless, our current data still unable to confirm
whether the type of program directly affects the debugging
process.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we present an experiment that explores the
impact of using a static-type system in the development of
certain programming tasks with respect to the number of
fulfilled requirements. We also investigate whether a static-type
system helps developer fix program errors. Although the tasks
are considered trivial, we hope our experiment contributes to the
discussion of when to use a static-type system because empirical
data that can be used to identify such situations is scarce.

One interesting point is that this study weakens the argument
of authors who argue that dynamic-type systems reduce the
development time due to the absence of type casting. In fact, in
the debugging session of our experiment, the result shows a
positive impact of static-type solutions for encryption program,
which involves type casting.

The result of the experiment can be summarized as follows:

 When subjects coded from scratch, there is not a
significant difference in terms of the number of
successfully achieved requirement points between

static- and dynamic-type solutions. This applies to both
programs.

 In errors-fixing tasks, a static-type system may be
beneficial. Subjects who used a static-type system
tended to fix more errors. Additionally, this benefit is
more pronounced in encryption programs, which
contain more data types.

As a future work, we will conduct additional experiments

with more subjects and more diverse programming tasks to
elucidate the characteristics of software programming activities
where static- and dynamic-type systems are more beneficial.
This will allow software developers to select the most suitable
language. We are currently investigating the possible benefits of
a static-type system in large-scale software projects. However,
in large-scale software development there are too many factors
to take into account because there are several software
development phases. As the result, the use of a static- or a
dynamic-type system in programming activities may become
negligible.

REFERENCES

[1] Benjamin C. Pierce. Types and programming languages. MIT Press,

Cambridge, MA, USA, 2002.

[2] Kanji, Gopal K. 100 Statistical Tests. SAGE Publication Ltd. London.
1993.

[3] Laurence Tratt. Dynamically typed languages. Advances in Computers,
77:149–184, 2009.

[4] Lamport, L. and Paulson, L. C. Should your specification language be
typed, vol. 21, ACM, New York, USA, 1999.

[5] Luca Cardelli. Type systems. In Allen B. Tucker, editor, The Computer
Science and Engineering Handbook, chapter 103, pages 2208–2236. CRC
Press, 1997.

[6] Lutz Prechelt. An empirical comparison of seven programming
languages, ieee computer (33). Computer, 33:23–29, 2000.

[7] Lutz Prechelt and Walter F. Tichy. A controlled experiment to assess the
benefits of procedure argument type checking. IEEE Trans. Software
Engineering, 24(4):302–312, 1998.

[8] Mark T. Daly, Vibha Sazawal, and Jeffrey S. Foster. Work in progress:
an empirical study of static typing in ruby. Workshop on Evaluation and
Usability of Programming Languages and Tools (PLATEAU),Orlando,
Florida, 2009.

[9] Sebastian Nanz and Carlo A. Furia. A comparative study of programming
languages in Rosetta Code. In proceedings of the 37th International
Conference on Software Engineering (ICSE ’15), pages 778-788. IEEE,
2015.

[10] Stefan Hanenberg. An experiment about static and dynamic type systems:
Doubts about the positive impact of static type systems on development
time. In Proceedings of the ACM international conference on Object
oriented programming systems languages and applications, OOPSLA ’10,
pages 22–35, New York, NY, USA, 2010.

[11] Stefan Hanenberg and Andreas Stuchlik. Static vs. dynamic type systems:
An empirical study about the relationship between type casts and
development time. In Proceedings of the 7th Symposium on Dynamic
Languages, DLS 2011, October 24, 2011, Portland, OR, USA, pages 97–
106. ACM, 2011

[12] Tegawende F. Bissyande, Ferdian Thung, David Lo, Lingxiao Jiang,
Laurent Reveillere. Popularity, Interoperability, and Impact of
Programming Languages in 100,000 Open Source Projects. 37th Annual
International Computer Software & Applications Conference
(COMPSAC 2013), pages 1-10. Kyoto, Japan, 2013.

