
 Closing the Gap between Unit Test Code and
Documentation

Karsten Stöcker
Leipzig University, Leipzig, Germany

Waseda University, Tokyo, Japan
stoecker@fuji.waseda.jp

Hironori Washizaki
Waseda University, Tokyo, Japan

washizaki@waseda.jp

Yoshiaki Fukazawa
Waseda University, Tokyo, Japan

fukazawa@waseda.jp

Abstract—Test Driven Development as well as the

documentation of tests and their architecture are today an
important pillar of software quality assurance. The change of
requirements during the implementation phase entails a need to
change tests as well as the test documentation of the software.
Since unit tests are specified in the implementation language, an
interdisciplinary readable documentation must be maintained,
which is structurally easier to comprehend and also make the test
transparent for persons who are not involved into code writing.
This leads to additional effort, costs and possibly inconsistencies
between the test and its documentation. This gap in the workflow
could be closed by Tanni – a domain specific language, which
allows the specification of test cases in the form of
interdisciplinary readable tables without requiring programming
skills. Based on them executable test code for the respective unit
test framework is generated. This merges specification and
documentation of unit test cases to one step of work. By this the
mentioned additional effort, costs and imminent inconsistencies
can be reduced. The Language Workbench Meta Programming
System from JetBrains serves as a technological base and is
enabler for further positive effects which possibly could be
gained by using the described language.

Keywords—Unit Test, Test Case Specification, Java,
Documentation, Meta Programming System, Domain-specific
Language, Test Code Generation

I.! INTRODUCTION

In the last few years, the approach of Test-driven
Development (TDD)[1] has spread and contributed to the
improvement of software quality [2]. This spread surely was
fueled by increasing agility in the development in general as
well as the support by powerful unit test frameworks - e.g.
JUnit [3].

But testing alone is not a guarantee for quality and reliable
software. An appropriate test architecture as well as the testing
of the right software components is crucial for a good software
quality and thus the project success [4](pp.205-231). Hence a
clear overview is necessary. Not infrequently employees leave
a company or change to another project. This threatens the loss
of knowledge in this area. Furthermore, the process of testing
software from fields of use with a higher security requirement
(e.g., financial services) and its documentation is often subject
to regulatory requirements, which are regularly examined by
superior authorities (e.g. BaFin in Germany[5]). Amongst these

reasons a comprehensive and constantly updated
documentation is indispensable. A weakness of unit test
frameworks shows up.

A.! The Gap between Unit Test Code and Documentation

Formulating unit tests in the implementation language of the
software product itself is comfortable for the developer, since
he does not need any knowledge about another language.
However, these are incomprehensible for persons without
programming knowledge – also in their structure. An
additional transparent documentation in a multidisciplinary
form gets required, which describes what and how something
was tested. But especially through today's agile development it
is not uncommon that requirements to the software change
during the implementation. In the case of TDD this involves a
change in the tests, which in turn necessitates a change to the
mentioned documentation by the developers [4](pp.57-58).

Fig. 1 Levels of necessary acitivities after requirements change and emerging gap

The question arises, whether the effort of the change –
extending over three levels (Fig. 1) – can be reduced? Is it
possible to close the gap between unit test case specification
and documentation by merging this to one working step?

The syntax for the formulation of test cases is a topic that has
been repeatedly addressed. As part of the development there
have been multiple changes to the syntax of JUnit [6][7].
Furthermore idea descriptions and prototypical
implementations devoted to the topic of comfortable unit test
case specification syntax are existing [8]. The main aim here is
often to make it more lightweight as well as the approach to
natural language constructs in order to increase readability.
But none of these changes and ideas allow the specification
and documentation of unit tests – in a for all people readable,
transparent and comprehensive form – at the same time.

II.! THE SOLUTION – TANNI

Tanni (jap. unit) persues a totally different approach. Unit tests
are specified in the form of tables which are readable to every
person by waiving programming language syntax without
loosing test functionality. Therefore these flexible tables are
composed of labeled mandatory and optional fields which
cover the parameters of unit test cases like

•! unit under test
•! assertion type
•! expected result
•! timeout
•! expected exception
•! …

and thus allow a comprehensive test descriptions.

Based on these defining tables, executable code for the
respective unit test framework gets generated. For the
prototypical implementation discussed in the further course of
the chapter JUnit was chosen as the target framework of code
generation, because of their distribution [9]. The technological
fundamental for the implementation is Meta Programming
System from JetBrains [10].

A.! Excurs to Meta Programming System

Meta Programming System (MPS) is a Language Workbench
(LWB) which was first released in 2005 under the Apache 2.0
license. On the one hand it offers the possibility of using
several different languages in one project (Solution Projects).
On the other hand, it allows the development of own Domain-
specific Languages (Language Projects)[11](p.22). Thus, Meta
Programming System directly supports the approach of
Language Oriented Programming (LOP)[12]. The description
of a language is based on aspects, which respectively represent
a specific viewing angle to the language. Among other
aspects, the following are particularly important to understand
the structure of Tanni:

•! Structure Aspect: Definition of permissible Abstract
Syntax Trees (AST)[11](p.20) by defining Concept
Node Hierarchies. A concept represents a node in the
AST.

•! Editor Aspect: Description of the presentation and
processing possibilities of concept nodes in two
different areas of the Language Workbench-GUI
(Editor View, Inspector View)[11](p.39) by a cell
structure.

•! Generator Aspect: Description of the translation of
Concept/AST to target language [11](pp.24-25).

The provision of functions that allow comfortable working
with the developed language, such as autocomplete (Fig. 3)
and syntax highlighting (Fig. 4) are supported by MPS so that
the provision gets simplified by the use of these powerful
LWB and help to make Tanni as userfriendly as possible.

B.! The Concept Node Hierarchy

The idea comprise to make the full functionality of the JUnit
framework accessible in Tanni. For this purpose, the API
structure of the framework [13] was examined in the first step.
The base for the investigation was the version 4.12. This
decision was based on the fact that JUnit 5 is not yet finalized
and will also be backward compatible to JUnit 4 [14]. Based
on this analysis, a concept node hierarchy was derived (Fig. 2)
that reflects the terminology of the JUnit framework (e.g.
TestSuite and TestCase) and makes them immediately
intelligible in large parts.!

The concepts PreparationStatementInJavaContainer
and AssertionInJavaContainer are particularly note-
worthy, because they are used to embed plain Java code in the
tabular test descriptions. Thus, it should remain possible to use
solutions which are not part of the unit test framework (e.g.
mocking frameworks) and therefore no corresponding
mapping as concept exists until now. Unrecognized recurring
command structures could later be formalized as part of Tanni
in the form of new concepts that implement the interfaces
IPreparationStatement and IAssertion. This makes
Tanni very expendable which simplifies reuse and helps to
save ressources.

Fig. 2 Extract from the Tanni concept node hierarchy

Based on the definitions of the IEEE standard 829 (“Standard
for Software and System Test Documentation”)[15], the
defined concepts were extended by further attributes (e.g.
unique test case identifiers). These are not absolutely
necessary to achieve JUnit framework-compatible unit test
code, but they are part of a professional test documentation
and are also deposited in the generated code (e.g. as comment)
to increase traceability.

To ensure error-free addressing of the Java classes and
methods, which should be tested, it is necessary to provide
autocomplete functionality. This is facilitated by MPS offering
a stub mechanism. To achieve the stubs for classes that should
be tested it is necessary that the source folder of them is added

Fig. 3 Java class reference in concept and editor along with final editor view

of Tanni

to the Solution Project as a source. In addition, a reference to
classes or methods must be stored in the appropriate concept,
by using the reference types Classifier and
MethodDeclaration (Fig. 3).

C.! The Editor and Inspector View

As already mentioned, MPS provides two separate views for
the visualization of concepts - the editor and the inspector
view. The editor view – as main input area in MPS – is used to
visualize the mentioned tables and their parameter input fields.

The inspector view is often used to purge the language
representation by extracting less relevant or additional
information and options to it [11](p.39). Tanni instead uses
this view to provide a preview of the generated unit test code
(Fig. 4). This makes it possible for a developer to see which
framework specific code is generated at any time. Non
software developers on the other hand can hide the inspector
view and thus focus on the test description in table form.

Fig. 4 Example of unit test code preview at inspector view

III.! FURTHER GAINABLE ADVANTAGES

In addition to the pure closing of the gap between test
specification and documentation, further positive effects
showed up, by the use of Tanni was well as MPS, which are
worth to be discussed.

One thing is that MPS supports the versioning of developed
languages by providing a so called Migration Aspect [16].
This aspect is used to describe the automatization of necessary
steps during migration from one language version to the next
in the form of scripts. An updating of existing documentation
to newer template (e.g. added new attribute) versions is
usually omitted because it must be done manually and so
requires a lot effort. But by means of mps migration
descriptions older documentation can also be kept up-to-date
on the latest template status automatically, which means an
increase of documentation consistency/quality.

Another conceivable advantage would be that a change of the
unit test framework or adjustments to possible syntax changes
of the used framework would be facilitated by the
implementation structure of Tanni. For this, it would only be
necessary to adapt the “translation descriptions” in the
generator aspect (Fig. 5). The number of code lines to be
changed manually can thus be massively reduced, thereby
effort and costs can be saved.

Furthermore, the documentation quality can be increased by
the definition of mandatory fields, which is not possible in this
form if as not unusual word processing application templates
are used for documentation. In the case of incompletely filled
cells MPS refuses to generate unit framework-specific test
code due to an impermissible syntax. This ensures, that
documentation is always complete. Additional to this the
merge also ensures that test and documentation are free of
contradictions. What is documented was also tested – and vice
versa.! Both of these results in a higher test documentation
quality.

One last important advantage, that could be drawn from the
table oriented structure of Tanni, is that the generation of tests
by end users might become possible. Users from specialist
areas mostly knows best the pitfalls of their working area (e.g.
complex financial calculations). However, the creation of tests
using the unit test framework APIs is not possible for them
due to lack of knowledge and limited resources to learn. Table
structures instead are generally understandable for everyone.
Creating tests without complex preparatory work (e.g. use of
mocking framework) could be undertaken by these experts of
her field. This kind of end user testing maybe could help
improve the test quality.

IV.!CONCLUSION AND FURTHER WORK

The prototypical implementation of Tanni – based on the
previously described structure – has shown at the example of
JUnit framework that the gap between unit test case
specification and documentation can be closed by a table-
oriented domain specific language (Fig. 5). The base for this is
the use of a powerful LWB with the characteristics of Meta
Programming System, which supports the implementation of a
table-oriented, comfortable language.

Work on the prototype has shown that the development of a
well thought out concept node hierarchy is nearly most
important. The development focus should be placed on this
aspect. Interfaces in the field of assertions as well as pre-test
preparation methods (@Before [17]) do play an important
role. Especially the latter one is very important in order not to
isolate the language from further components of test
environments (e.g. mocking frameworks) and to enable
eventually subsequent integration by means of new concept
node hierarchy elements.

Beside the closed gap, the discussed additional advantages:

•! automated updating of existing documentations after
template changes via language versioning ! effort
reduction and increase of documentation
quality/consistency

•! unit test code adjustment after framework or
framework syntax change by simple generator aspect
adjustment ! effort reduction

•! easy definition of mandatory fields using syntax
check, which means no test code generation before
completed documentation ! ensuring documentation
completeness

•! increasing end-user involvement by enabling them to
write own test cases using the understandable table
syntax of Tanni ! tests which address the pitfalls of
an application field better (e.g. financial calculations)

•! merging of documentation and specification ensures
consistency – what is documented was also tested
and vice versa.

could be gained and let the further pursuit of the approach
seem to be worthwhile.

The next step to advance the idea of Tanni should be to test
function complete prototype in an small productive
environment. The main focus should be to further evaluate
whether the designed concept node hierarchy and its attributes
are proven in practice or adaptations are necessary. In
addition, it should be tried to identify recurring structures in
more complex test preparations in order to expand the concept
node hierarchy in these area to promote the idea of a table
based description and further enhance the comfortability of
Tanni.

Lastly, during this experiment it should be evaluated whether
the effort for test formulation, documentation and change
could be reduced under real operating conditions by using
Tanni.

[1]! K. Beck, “Test-Driven Development By Example“, Addison-Wesley

Professional, 2002.
[2]! D. Janzen and H. Saiedian, "Does Test-Driven Development Really

Improve Software Design Quality?", IEEE Software, p. 77-84,
March/April, 2008.

[3]! www.junit.org
[4]! I. Sommerville, “Software Engineering”, 9th edition, Pearson Education,

2011.
[5]! www.bafin.de/EN
[6]! A. Glover, “Jump into JUnit 4 - Streamlined testing with Java 5

annotations”, IBM Coorporation, 2007.
[7]! S. Bley, “What’s new in JUnit 5?”, Saxonia Systems AG, 08.02.2016,

(https://www.sogehtsoftware.de/blog/post/whats-new-in-junit-5).
[8]! P. Kainulainen, „Turning Assertions into a Domain Specific Language“,

16.11.2013, (https://www.petrikainulainen.net/programming/unit-
testing/turning-assertions-into-a-domain-specific-language/).

[9]! A. Zhitnitsky, “Analysis about the Distribution of Libraries on GitHub”,
14.04.2015, (http://blog.takipi.com/we-analyzed-60678-libraries-on-
github-here-are-the-top-100/).

[10]! www.jetbrains.com/mps/
[11]! F. Campagne, “The MPS Language Workbench – Volume 1”, 2nd

edition, Campagnelab, 2015.
[12]! M. Fowler, “Language Workbenches: The Killer-App for Domain

Specific Languages?“, 12.06.2015,
(https://www.martinfowler.com/articles/languageWorkbench.html)

[13]! www.junit.org/junit4/javadoc/4.12/
[14]! S. Bechthold, S. Brannen, J. Link, M. Merdes and M. Phillipp, “JUnit 5

User Guide”, Version 5.0.0-M2, 2016,
(http://junit.org/junit5/docs/current/user-guide/).

[15]! www.standards.ieee.org/findstds/standard/829-2008.html
[16]! F. Campagne, “The MPS Language Workbench – Volume 2”, 1st

edition, Campagnelab, 2016, pp. 27-37.
[17]! www.junit.sourceforge.net/javadoc/org/junit/Before.html

