

An Empirical Study on Relationship Between Requirement
Traceability Links and Bugs

Rizki Amelia1, Hironori Washizaki1*, Yoshiaki Fukazawa1, Keishi Oshima2, Ryota Mibe2,
Ryosuke Tsuchiya2

1 Dept. of Computer Science and Engineering, Waseda University, Tokyo, Japan.
2 Hitachi, Ltd., Research & Development Group, Center for Technology Innovation - Systems Engineering,
Japan.

* Tel.: +81-352863272; email: washizaki@waseda.jp
Manuscript submitted February XX, 2017; accepted XX XX, 2017.
doi: ???

Abstract: Early bug detection reduces the cost of software maintenance; but none of previous works have

utilized requirement traceability links (RTLs) as a predictor for bugs. To discuss how to use RTLs to predict

the number of bugs, we propose an RTL recovery approach classification based on the ease of the recovery

process. Based on that, we investigated the relationship using data from industrial software. We confirmed

that classes related to more RTLs tend to have more bugs, and the classification gives better correlations

although including RTL in the bug prediction model does not affect the performance. Some class files with no

and low RTLs also have bugs; we hypothesize that this occurs because the actual RTL is missing or not

established, which is supported by the observation that bugs in these classes are highly correlated with

maximum cyclomatic complexity.

Key words: Requirement traceability links; Bug prediction; Software metrics; Software maintenance

1. Introduction

Traceability indicates that the relationship between two objects can be traced [1]. Empirical evidence has

shown that requirement traceability links (RTLs), which are specified associations between requirements

and other artifacts, support maintenance [2][3]. Many studies have revealed that software maintenance is

the most expensive phase in the software lifecycle; currently maintenance accounts for 60–90% of the total

software costs and least 50% of the total man hours for a software system [3, 4]. We argue that predicting

bugs is one way to improve the efficiency of maintenance activities. This leads to the question, “Can RTLs be

used to predict bugs as early as possible in order to minimize the maintenance costs?” None of previous

works have utilized RTL as a predictor for bugs.

Before using RTLs to predict bugs, we must investigate whether RTLs and the number of bugs have a

positive relationship. We hypothesize that as the number of RTLs of a class increase, the likelihood that the

class has entangled concerns. Thus, classes with many traceability links should have more bugs. This is

supported by [6] in which tangled source code related to other concerns causes defects.

Traceability is a key issue to ensure consistency among software artifacts of subsequent phases in the

development cycle [7]. Despite the importance and the advantages of traceability links, explicit traceability is

rarely established unless there is a regulatory reason [8]. Herein we propose an RTL recovery approach

classification based on the ease of the recovery process. The classification is divided into four types. Type I is

an explicit RTL, whereas Types II–IV are implicit RTLs. In our approach, RTLs are modified to recover

missing links using software from a company. Based on the classification, we aim to answer the following

research questions:

RQ1 Do classes that are related to more requirements as indicated by more RTLs tend to have more bugs?

RQ2 Does the type of implicit RTL recovery classification make a difference in the relationship between

RTLs and bugs?

RQ3 Does including RTLs affect the bug prediction model performance?

This paper makes the following contributions:

 An RTL recovery approach classification based on the ease of the recovery process is proposed.

 The results of an extensive investigation on the relationship between RTLs and bugs are discussed.

 A new bug prediction model with RTLs as a prediction factor is presented.

 The proposed RTL recovery classification successfully identifies the class files that are most difficult to

maintain (i.e., class files without explicit RTLs and ones with the highest number of bugs).

The rest of paper is organized as follows: Section 2 presents our RTL recovery approach classification.

Section 3 details the design. Section 4 provides the analysis results, while Section 5 shows the experiment.

Section 6 addresses the research questions. Section 7 presents related works. Finally section 8 provides a

conclusion and future direction.

2. RTL Recovery Approach Classification

[9] defined three possible scenarios to recover traceability links. In this study, we adopted a similar

approach to recover implicit traceability links. In addition to the three implicit traceability links, we also

include one explicit traceability link. This setup realizes the following:

1) There are two types of traceability links: explicit and implicit.

2) Implicit traceability links are classified by the ease of the recovery process using the recovery scenarios

in [9].

Therefore our proposed RTL recovery approach (depicted in Fig. 1) is classified into the following four

types: Type I-IV.

 Type I contains explicit traceability links established during the software development process using

knowledge of the developers. We assumed that an ideal explicit traceability links is delivered after all

links between related sources and target artifacts are completely established. However, it is necessary to

verify the links’ consistency if one or both of the linked artifacts are altered.

 Type II is the first implicit scenario in [5], which is manual tracing. All tracing activities and decisions

are rendered by a human analyst. Assuming that both the source and target artifacts have representative

titles for their contents, this process is considered easy because associating artifact titles recovers the

links. It is less time consuming, and human knowledge can associate polysemy terms well when

associating the artifacts title.

 Type III, which is the second implicit scenario, is automated tracing. In automated tracing, an analyst

inputs the appropriate tracing tools and all necessary files. Then traceability links are automatically

determined by examining content similarities between the source and target artifacts. This process is

somewhat difficult and time consuming. Automated tracing provides candidates with the limitation that

the retrieved links may be insufficient to directly use as explicit traceability links.

Type IV, which is the third implicit scenario, is semi-automated tracing. These RTLs are difficult to recover.

First, tools are used for automatic tracing. Then the candidate RTLs are studied by an analyst to determine

the correctness and to explore thoroughly both the source and target artifacts to elucidate subtle traceability

links not offered by the tools.

・・・ recovering

links ・・・ form

void build() {

form = ・・・

ScoreCalc.java

LinkRecover.java

Formatter.java

Type I. Explicit link

Type II. Implicit link recovered

manually based on titles (i.e. names)

Requirement

Recover link

Type III. Implicit link recovered by

tools based on content similarity

Type IV. Implicit

links elucidated

from Type II, III

links and manually-

added ones

Fig. 1. RTL Recovery Approach Classification

3. Study Design

3.1. Software Under Study

We collected data from an enterprise software project developed by a Japanese company. The project

consisted of 830 KLOC from 793 Java class code files with 962 requirements. We chose a project written in

Java® due to the domain expert’s familiarity with Java®.

A traceability link is a specified association between a pair of artifacts where one represents the source

artifact and other is comprised of the target artifacts. Links can be traversed in both directions [10]. Hence,

RTL is a specified association between the requirements and class files. In this project, class files have unique

IDs, which represent an implemented requirement. Thus, the class file name and requirement name are

matched using the same ID.

3.2. RTL Recovery Approach Classification Application

Type I RTLs occur based on ID matching where the requirement ID and the class file ID are matched via a

1-to-1 relationship. Type II RTL is impossible to recover for the software under study since the class files

contain IDs only.

Type III RTLs have either a requirement ID or title in the class file contents. Because TraceLab [11], which

is a common traceability link recovery tool, is limited to documents with English contents, we created our

own simple tool for similarity analysis between the requirement ID and title with the class file’s contents to

find Type III RTLs. If class file contents contain either the ID or title, then whether the artifacts are related can

be determined.

For Type IV RTLs, we treated the result from [12] since it targeted the same software. We did not validate

candidate links from Type III RTLs due to time and cost limitation.

We grouped the class files based on the existence of RTLs by type as shown in Table I for further analysis.

For example, a class having Type III RTLs and Type IV ones without Type I ones is grouped in g4. Due to the

limitation of Type IV RTL recovery, there are classes (grouped in g1) without any RTL.

TABLE I. CLASS GROUPS BASED ON THE EXISTENCE OF RTL TYPE

Group
Type

Class Group
Type

Class
I III IV I III IV

g1 0 0 0 24 g4 0 1 1 55

g2 0 0 1 2 g5 1 1 0 13

g3 0 1 0 21 g6 1 1 1 678

3.3. Code Metrics for Predictors

To build a bug prediction model, we also analyzed other code metrics as candidates of predictors. Based on

the existing work [13], we analyzed similar metrics: CK metrics [14], OO metrics, complexity metrics, and

volume metrics; these metrics are selected basically by following the work in [13]. Values of these metrics

were measured from the project using Understand [15]. The complexity is based on McCabe’s cyclomatic

complexity. Table II lists the code metrics included in our analysis.

3.4. Correlation Analysis

The correlation analysis aimed to determine correlations between RTLs and bugs as well as to determine

correlations between code metrics and bugs. We employed correlation coefficient analysis using Pearson’s

correlation coefficient (r). Although Spearman’s rank correlation coefficient is robust towards a nonlinear

association, we selected r because this research focuses on linear correlations between two objects to build

the prediction model using multiple linear regression.

To investigate the correlation between RTL and bugs, the class files were sorted into three groups based on

the amount of RTLs: zero, low, and high. The division of classes was based on the RTL median. Then the

distribution of the number of bugs in each group was analyzed and the population significance was

determined using a Wilcoxon rank sum test between the zero group and the target group.

To investigate the correlations between code metrics and bugs, we computed the r for each metric and

extracted the p-value to find the significance of the correlation. Only metrics with p-values < 0.05 were

compared. Metrics with a strong correlation with bugs were employed as predictors in the bug prediction

model. To determine the relationship strength based on the obtained r, we used an existing categorization [7].

4. Analysis Results

4.1. Number of Bugs on Class Files Grouped by RTL Type

Fig. 2 shows that g4 followed by g6 are the class files with the highest number of bugs (by mean and

median). Since g4 is the group of class files without Type I RTLs, we hypothesize that class files in this group

will be difficult to maintain if their RTLs are not recovered.

Without considering the existence of Type III and Type IV, g4 will be very costly with respect to bug fixing

activities relative to other groups without RTLs because g4 has many bugs but lacks Type I RTLs. This

situation makes tracing the specification of the code difficult; software engineers should establish explicit

RTLs, which reduce the corrective maintenance cost. Similarly, Type III and Type IV RTLs should help reduce

the corrective maintenance cost.

TABLE II. CODE METRICS USED

Catg. Name Description

CK

WMC Count of Methods

LCOM Percent Lack of Cohesion

DIT Max Inheritance Tree

CBO Count of Coupled Classes

NOC Count of Derived Classes

RFC Count of All Methods

OO

NIM Number of instance methods

NIV Number of instance variables

IFANIN Count of Base Classes

Units
Number of non-nested modules, block

data units, and subprograms

Comx

MaxCyclomati

c

Maximum cyclomatic complexity of all

nested functions or methods.

AvgCyclomatic
Average cyclomatic complexity for all

nested functions or methods

Modified Modified cyclomatic complexity

Strict Strict cyclomatic complexity

Essential Essential complexity

Vol

AvgLines
Average number of lines for all nested

functions or methods.

AvgCodes

Average number of lines containing

source code for all nested functions or

methods.

AvgComment

Average number of lines containing

comment for all nested functions or

methods.

AvgBlank
Average number of blanks for all nested

functions or methods.

Lines Total lines in a file

Comments Total lines with a comment

Blanks Total lines without a comment or code

Code Total lines with code

ExeLines
Number of lines containing an executable

code

DecLines Total lines with declarative code

ExeStmt Number of executable statements

DecStmt Number of declarative statements

RatioComment Ratio of comment lines to code lines.

4.2. Correlation between RTL and Bugs

The boxplot in Fig. 3 and Table III show the difference of the number of bugs by group. Groups with more

RTLs tend to have more bugs. The Type III RTL group shows the strongest difference. Meanwhile, the Type I

class file groups do not differ significantly as there are only two Type I groups. This is because the company

tried to match the requirement and class files in a 1-to-1 relationship by matching artifacts’ IDs.

We conducted further analysis to determine which metrics contribute most to the number of bugs. Nine

out of 28 metrics in Table II show uniform low values for the class files in the zero group without bugs (Table

IV). The Pearson’s r between these metrics and bugs for classes in group zero with bugs indicates that only

MaxCyclomatic has a strong correlation to the number of bugs. Thus, MaxCyclomatic is used as a metric to

predict bugs in class files with no and low RTLs.

Fig. 2. Bugs Distribution in the Class Files Grouped by RTL Type

Wilcox p-value
between g4 with:
g1: 7e-4
g2: NA
g3: 5e-4
g5: 13e-4
g6: 11e-4

Fig. 3. Number of Bugs in the Class Files having Type I RTLs (Z: zero, L: low, H: high in terms of the amount of
RTLs)

Fig. 4. Number of Bugs in the Class Files having Type III RTLs (Z: zero, L: low, H: high in terms of the amount
of RTLs)

Fig. 5. Number of Bugs in the Class Files having Type IV RTLs (Z: zero, L: low, H: high in terms of the amount
of RTLs)

TABLE III. DISTRIBUTION OF THE NUMBER OF BUGS IN GROUP

TABLE IV. CORRELATION BETWEEN METRICS AND BUGS IN GROUP

4.3. Correlation between Code Metrics and Bugs

Of 28 code metrics in Table II, 12 have correlations with significant values < 0.05: MaxCyclomatic (0.714),

ExeStmt (0.712), ExeLines (0.703), LOC (0.533), Strict (0.497), AvgComment (0.49), AvgCode (0.475),

AvgLines (0.473), Modified (0.46), CBO (0.446), and Essential (0.394).

4.4. RTL Recovery Approach Classification Application

The correlations between RTLs and bugs are weak for Type IV and moderate for Type III. There was

almost no correlation for Type I. Among the metrics analyzed, RTL is the second weakest, indicating that

code metrics play a larger role for predicting bugs in class files. Consequently, only Type III RTLs and code

metrics with moderate and strong correlations are used as predictors in the following experiment

5. Bug Prediction Based on Relationship Analysis

5.1. Experimental Setup

We used a standard evaluation technique called data splitting [16] to evaluate the predictive performance.

We randomly chose two-thirds of all class files as training data to build the prediction model, while the

remaining one-third was used as test data. We performed 50 random splits to ensure the stability and

repeatability of our results.

To build the multiple regression model, we analyzed the multi-collinearity among the independent variables.

Because the common indicator of multi-collinearity is the variance inflation factor (VIF), we removed

metrics with VIF ≥ 4 iteratively. Hence, none of the metrics used have statistical evidence of multi-collinearity.

The metrics with VIF < 4 after eight iterations are LOC, AvgComment, MaxCyclomatic, CBO, and the number

of Type III RTLs since it showed the highest correlation with bugs among all types of RTL.

Using these four metrics and RTL, we built our bug prediction models. Two types of models were

constructed: (M1) with RTLs and (M2) without RTLs. The models’ performances were assessed via an

Type Group Total Class Mean s.d Wilcox p-value Pearson’s r

I

zero 102 3.324 8.138

-0.083 low 691 2.111 4.173 0.795

high 0 NA NA NA

III

zero 26 0.5 0.99

0.409 low 560 1.411 3.011 0.226

high 207 4.807 7.605 6.01E-18

IV

zero 58 0.569 1.855

0.384 low 629 1.943 4.092 0.001

high 106 5.123 8.179 1.5E-15

Catg. Metrics
No Bugs: uniformity With Bugs: Pearson's r

zero low zero low

CK
DIT Yes Yes NA 0.079

NOC Yes Yes 0.097 NA

OO IFANIN Yes Yes 0.097 0.066

Comx

Modifier Yes No 0.54 0.48

Strict Yes No 0.44 0.5

AvgCyclo Yes No 0.54 0.48

MaxCyclo Yes No 0.97 0.73

Vol
AvgLines Yes No 0.42 0.52

AvgComment Yes No 0.27 0.54

explanatory power evaluation and a predictive power evaluation.

To measure the quality of the model built from the training data, we computed R-square ranging from 0 to

1 where a higher value indicates a higher explanative power.

The evaluation of predictive power of the model is performed with accuracy and sensitivity. For the

accuracy, we computed the root mean squared error (RMSE) to determine the difference between the

predicted number of bugs and the actual number of bugs. We chose to use RMSE instead of MSE because

RMSE has the same unit as the dependent variable, making the results easier to interpret. A smaller RMSE

value indicates fewer errors and a smaller difference between the predicted and actual bugs. For the

sensitivity, we computed the Pearson’s r to assess the correlation between the predicted bug and the actual

bugs. The closer the absolute value is to 1, the stronger the correlation.

5.2. Experimental Results

Table V summarizes the results of the explanatory power (R-squared) and predictive power (RMSE and

Pearson’s r) from the 50 random splits. The bug prediction model with or without RTLs does not perform

strongly.

The R-squared shows that the model with RTL performs slightly better, whereas the predictive power

performance of the bug prediction model without RTL is slightly better according to the mean of RMSE and

Pearson’s r. These results imply that the model with RTL is not more accurate than the model without RTL.

Additionally, the low value of the standard deviation of the performance measures shows consistent results

for both models.

TABLE V. RESULTS OF MODEL PERFORMANCE IN 50 SPLITS

 Min Max Mean s.d.

M1.
With
RTL

R-squared 0.573 0.723 0.648 0.038

RMSE 2.290 3.870 3.197 0.440

Pearson’s r 0.650 0.868 0.775 0.046

M2.
Without
RTL

R-squared 0.562 0.719 0.644 0.037

RMSE 2.300 3.880 3.159 0.437

Pearson’s r 0.657 0.873 0.779 0.044

6. Discussion

6.1. Research Questions

RQ1 Do classes that are related to more requirements as indicated by more RTLs tend to have more bugs?

Classes related to more RTLs tend to have more bugs. This result is supported moderately by the

correlation analysis result of Pearson’s r of 0.409 (significant below the 0.05 level). We assume that class files

in groups zero or low have a lot of missing RTLs; it is likely that as the RTLs in these classes are recovered,

the correlations will improve.

RQ2 Does the type of implicit RTL recovery classification make a difference in the relationship between

RTLs and bugs?

The recovery classification gives better correlations between the recovered RTLs and bugs. For the current

project, the best relationship is shown by Type III RTLs.

RQ3 Does including RTLs affect the bug prediction model performance?

In explanatory power, the model with RTL performed slightly better than the model without RTL. In

predictive power, the model without RTL is slightly better than the model with RTL. However, the difference

in the explanatory power performance is not significant. These results suggest that including RTL in the bug

prediction model does not affect the performance, at least for the current project.

6.2. Usage of Findings

Establishing RTLs explicitly helps trace the code from the class files to the requirements, improving the

efficiency of fixing bugs. Moreover, engineers should be better able to allocate their resources more

effectively as it should be intuitive that class files with more RTLs will likely have more bugs than class files

with fewer RTLs.

 With the proposed RTL recovery classification approach, we grouped the class files based on the

existence of RTLs by type to confirm which groups are in endangered states and whether they are

maintained easily. Our findings indicate that software engineers should be aware of the maximum cyclomatic

complexity of class files that they are developing because this will lead to bug-prone class files.

6.3. Threats to Validity

External Validity: The analysis results and the current prediction model cannot be generalized beyond the

specific software used in the experiment. Consequently, validation using other software projects is necessary.

Internal Validity: As we have speculated, the data of current project where we suspected that the

established RTLs are incomplete or missing, it was challenging to determine a strong relationship between

RTLs and bugs.

Statistical Validity: All the results from the analysis and experimental study, including the performance of

the bug prediction model, are significant below the 0.05 level.

7. Related Works

[6] demonstrated that crosscutting concerns do cause defects by examining three small-sized to

medium-sized Java® open-source projects. While [6] focuses on crosscutting concerns, our work focuses on

analyzing tangling concerns indirectly. [6] suggested a method to realize software reliability by modularizing

crosscutting concerns, while our work suggests that software developers establish RTLs, which are used to

predict bugs, in order to estimate the maintenance costs. If RTLs are not established during development, we

suggest using our proposed approach to recover implicit RTLs.

Many researches [13][17-22] examined bug prediction models using code metrics. One standard set of

metrics is the Chidamber and Kemerer (CK) metrics suite, which is used in [17, 18][21, 22]. The bug

prediction models built in [13][19, 20] used other code metrics as predictors, while [14] found that no

predictor could perform well except for in the project it was originally designed. In [13], Marco D’Ambros et

al. compared the performance of models with CK alone, OO alone, CK + OO, and LOC alone as predictors. They

found that the model with CK + OO metrics exhibit the best predictor performance.

8. Conclusion and Future Work

There is a moderate correlation between RTLs and bugs. Some class files with no and low RTLs also have

bugs. We hypothesize that this occurs because the actual RTL is missing or not established, which is

supported by the observation that bugs in these classes are highly correlated with maximum cyclomatics.

Our findings suggest that RTL is missing for these class files having a high maximum complexity since they

must implement at least one requirement. Hence, implementing an explicit RTL recovery tool is

recommended as it helps reduce the corrective maintenance phase for class files with many bugs. On the

other hand, including RTL in a bug prediction model does not affect the model performance.

In the future, we plan to investigate which bugs on class files in g4 (Section 4) are actually caused by

missing links to strengthen our suggestions about the importance of explicit RTL. Then, we plan to recover

the real Type IV RTLs on the same software and repeat the analysis to see whether it makes difference result.

We also plan to replicate the analysis for different datasets from software. Moreover we plan to employ other

models for bug prediction such as machine-learning ones in addition to multiple linear regression.

References

[1] Kazuki Nishikawa, Hironori Washizaki, Yoshiaki Fukazawa, Keishi Ohshima, and Ryota Mibe,

"Recovering Transitive Traceability among Software Artifacts," Proceedings of the 31st IEEE

International Conference on Software Maintenance and Evolution (ICSME), pp.576-580, 2015.

[2] Patrick Mäder and Alexander Egyed, "Assessing the Effect of Requirements Traceability for Software

Maintenance," Proceedings of the 28th IEEE International Conference on Software Maintenance (ICSM),

pp.171-180, 2012.

[3] Giuliano Antoniol, Gerardo Canfora, Gerardo Casazza, Andrea De Lucia, and Ettore Merlo, "Recovering

traceability links between code and documentation," IEEE Transactions on Software Engineering,

Vol.28, No.10, pp.970-983, 2002.

[4] Bennet P. Lientz, and E. Burton Swanson, "Software maintenance management," Reading, Ma.:

Addison-Wesley, 1980.

[5] Jose M. Conejero, Eduardo Figueiredo, Alessandro Garcia, Juan Hernandez, and Elena Jurado, "On the

relationship of concern metrics and requirements maintainability", Information and Software

Technology, Vol.54, No.2, pp.212-238, 2012.

[6] Marc Eaddy, Thomas Zimmermann, Kaitlin D. Sherwood, and Vibhav Garg, "Do Crosscutting Concerns

Cause Defects?," IEEE Transactions on Software Engineering, Vol.34, No.4, pp. 497-515, 2008.

[7] Christine Dancey, and John Reidy, “Statistics Without Maths for Psychology,” Pearson Prentice Hall,

2011.

[8] Andrea De Lucia, Andrian Marcus, Rocco Oliveto, and Denys Poshyvany, "Information Retrieval Methods

for Automated Traceability Recovery," in Software and Systems Traceability, Springer, pp.71-98, 2012.

[9] Alex Dekhtyar, and Jane Huffman Hayes., "Studying the Role of Humans in the Traceability Loop", in

Software and Systems Traceability, Springer, pp.241-261, 2012.

[10] Jane Cleland-Huang, Orlena Gotel, and Andrea Zisman, "Software and systems traceability," London:

Springer, 2012.

[11] Coest.org (last visit: April 27th 2016), http://www.coest.org/index.php/resources/dat-sets

[12] Ryosuke Tsuchiya, Hironori Washizaki, Yoshiaki Fukazawa, Keishi Oshima, and Ryota Mibe, "Interactive

Recovery of Requirements Traceability Links Using User Feedback and Configuration Management Logs,

" Proceedings of the 27th International Conference on Advanced Information Systems Engineering

(CAiSE), pp.247-262, 2015.

[13] Marco D’Ambros, Michele Lanza, and Romain Robbes, "Evaluating Defect Prediction Approaches: A

Benchmark and An Extensive Comparison," Empirical Software Engineering, Vol.17, No.4, pp 531-577,

2011.

[14] Shyam R. Chidamber and Chris F. Kemerer, "A Metrics Suite for Object Oriented Design," IEEE

Transactions on Software Engineering, Vol.20, No.6, pp.476-493, 1994.

[15] SciTools.com (last visit: April 27th 2016), http://SciTools.com

[16] Junjie Wang, Juan Li, Qing Wang, and Da Yang, "Can Requirements Dependency Network be Used as

Early Indicator of Software Integration Bugs?," Proceedings of the 21st IEEE International

Requirements Engineering Conference (RE), pp.185-194, 2013.

[17] Khaled El Emam, Walcelio Melo, and Javam C. Machado, "The prediction of Faulty Classes Using

Object-Oriented Design Metrics," Journal of Systems and Software, Vol.56, No.1, pp.63-75, 2001.

[18] Tibor Gyimothy, Rudolf Ferenc, and Istvan Siket, "Empirical validation of object-oriented metrics on

open source software for fault prediction," IEEE Transactions on Software Engineering, Vol.31, No.10,

pp.897-910, 2005.

[19] Nachiappan Nagappan, Thomas Ball, and Andreas Zeller, "Mining Metrics to Predict Component

Failures," Proceedings of the 28th International Conference on Software Engineering (ICSE),

pp.452-461, 2006.

[20] Thomas Zimmerman, Rahul Premraj, and Andreas Zeller, "Predicting Defects for Eclipse," International

Workshop on Predictor Models in Software Engineering (PROMISE), p.9, 2007.

[21] Niclas Ohlsson, and Hans Alberg, "Predicting fault-prone software modules in telephone switches," IEEE

Transactions on Software Engineering, Vol.22, No.12, pp.886-894, 1996.

[22] Victor R. Basili, Lionel C. Briand, and Walcelio L. Melo, "A validation of object-oriented design metrics as

quality indicators," IEEE Transactions on Software Engineering, Vol.22, No.10, pp.751-761, 1996.

