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Abstract: Early bug detection reduces the cost of software maintenance; but none of previous works have 

utilized requirement traceability links (RTLs) as a predictor for bugs. To discuss how to use RTLs to predict 

the number of bugs, we propose an RTL recovery approach classification based on the ease of the recovery 

process. Based on that, we investigated the relationship using data from industrial software. We confirmed 

that classes related to more RTLs tend to have more bugs, and the classification gives better correlations 

although including RTL in the bug prediction model does not affect the performance. Some class files with no 

and low RTLs also have bugs; we hypothesize that this occurs because the actual RTL is missing or not 

established, which is supported by the observation that bugs in these classes are highly correlated with 

maximum cyclomatic complexity.  
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1. Introduction 

Traceability indicates that the relationship between two objects can be traced [1]. Empirical evidence has 

shown that requirement traceability links (RTLs), which are specified associations between requirements 

and other artifacts, support maintenance [2][3]. Many studies have revealed that software maintenance is 

the most expensive phase in the software lifecycle; currently maintenance accounts for 60–90% of the total 

software costs and least 50% of the total man hours for a software system [3, 4]. We argue that predicting 

bugs is one way to improve the efficiency of maintenance activities. This leads to the question, “Can RTLs be 

used to predict bugs as early as possible in order to minimize the maintenance costs?” None of previous 

works have utilized RTL as a predictor for bugs. 

Before using RTLs to predict bugs, we must investigate whether RTLs and the number of bugs have a 

positive relationship. We hypothesize that as the number of RTLs of a class increase, the likelihood that the 

class has entangled concerns. Thus, classes with many traceability links should have more bugs. This is 

supported by [6] in which tangled source code related to other concerns causes defects. 

Traceability is a key issue to ensure consistency among software artifacts of subsequent phases in the 

development cycle [7]. Despite the importance and the advantages of traceability links, explicit traceability is 

rarely established unless there is a regulatory reason [8]. Herein we propose an RTL recovery approach 

classification based on the ease of the recovery process. The classification is divided into four types. Type I is 



  

an explicit RTL, whereas Types II–IV are implicit RTLs. In our approach, RTLs are modified to recover 

missing links using software from a company. Based on the classification, we aim to answer the following 

research questions:  

RQ1 Do classes that are related to more requirements as indicated by more RTLs tend to have more bugs? 

RQ2 Does the type of implicit RTL recovery classification make a difference in the relationship between 

RTLs and bugs? 

RQ3 Does including RTLs affect the bug prediction model performance?  

This paper makes the following contributions:  

 An RTL recovery approach classification based on the ease of the recovery process is proposed. 

 The results of an extensive investigation on the relationship between RTLs and bugs are discussed.  

 A new bug prediction model with RTLs as a prediction factor is presented.  

 The proposed RTL recovery classification successfully identifies the class files that are most difficult to 

maintain (i.e., class files without explicit RTLs and ones with the highest number of bugs). 

The rest of paper is organized as follows: Section 2 presents our RTL recovery approach classification. 

Section 3 details the design. Section 4 provides the analysis results, while Section 5 shows the experiment. 

Section 6 addresses the research questions. Section 7 presents related works. Finally section 8 provides a 

conclusion and future direction. 

2. RTL Recovery Approach Classification 

[9] defined three possible scenarios to recover traceability links. In this study, we adopted a similar 

approach to recover implicit traceability links. In addition to the three implicit traceability links, we also 

include one explicit traceability link. This setup realizes the following:   

1) There are two types of traceability links: explicit and implicit. 

2) Implicit traceability links are classified by the ease of the recovery process using the recovery scenarios 

in [9]. 

Therefore our proposed RTL recovery approach (depicted in Fig. 1) is classified into the following four 

types: Type I-IV.  

 Type I contains explicit traceability links established during the software development process using 

knowledge of the developers. We assumed that an ideal explicit traceability links is delivered after all 

links between related sources and target artifacts are completely established. However, it is necessary to 

verify the links’ consistency if one or both of the linked artifacts are altered.  

 Type II is the first implicit scenario in [5], which is manual tracing. All tracing activities and decisions 

are rendered by a human analyst. Assuming that both the source and target artifacts have representative 

titles for their contents, this process is considered easy because associating artifact titles recovers the 

links. It is less time consuming, and human knowledge can associate polysemy terms well when 

associating the artifacts title.  

 Type III, which is the second implicit scenario, is automated tracing. In automated tracing, an analyst 

inputs the appropriate tracing tools and all necessary files. Then traceability links are automatically 

determined by examining content similarities between the source and target artifacts. This process is 

somewhat difficult and time consuming. Automated tracing provides candidates with the limitation that 

the retrieved links may be insufficient to directly use as explicit traceability links. 

Type IV, which is the third implicit scenario, is semi-automated tracing. These RTLs are difficult to recover. 

First, tools are used for automatic tracing. Then the candidate RTLs are studied by an analyst to determine 

the correctness and to explore thoroughly both the source and target artifacts to elucidate subtle traceability 

links not offered by the tools. 
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Fig. 1. RTL Recovery Approach Classification 

3. Study Design 

3.1. Software Under Study 

We collected data from an enterprise software project developed by a Japanese company. The project 

consisted of 830 KLOC from 793 Java class code files with 962 requirements. We chose a project written in 

Java® due to the domain expert’s familiarity with Java®.  

A traceability link is a specified association between a pair of artifacts where one represents the source 

artifact and other is comprised of the target artifacts. Links can be traversed in both directions [10]. Hence, 

RTL is a specified association between the requirements and class files. In this project, class files have unique 

IDs, which represent an implemented requirement. Thus, the class file name and requirement name are 

matched using the same ID.  

3.2. RTL Recovery Approach Classification Application 

Type I RTLs occur based on ID matching where the requirement ID and the class file ID are matched via a 

1-to-1 relationship. Type II RTL is impossible to recover for the software under study since the class files 

contain IDs only.   

Type III RTLs have either a requirement ID or title in the class file contents. Because TraceLab [11], which 

is a common traceability link recovery tool, is limited to documents with English contents, we created our 

own simple tool for similarity analysis between the requirement ID and title with the class file’s contents to 

find Type III RTLs. If class file contents contain either the ID or title, then whether the artifacts are related can 

be determined. 

For Type IV RTLs, we treated the result from [12] since it targeted the same software. We did not validate 

candidate links from Type III RTLs due to time and cost limitation. 

We grouped the class files based on the existence of RTLs by type as shown in Table I for further analysis. 

For example, a class having Type III RTLs and Type IV ones without Type I ones is grouped in g4. Due to the 

limitation of Type IV RTL recovery, there are classes (grouped in g1) without any RTL. 

TABLE I.  CLASS GROUPS BASED ON THE EXISTENCE OF RTL TYPE 

Group 
Type 

Class Group 
Type 

Class 
I III IV I III IV 

g1 0 0 0 24 g4 0 1 1 55 

g2 0 0 1 2 g5 1 1 0 13 

g3 0 1 0 21 g6 1 1 1 678 

 

 



  

3.3. Code Metrics for Predictors 

To build a bug prediction model, we also analyzed other code metrics as candidates of predictors. Based on 

the existing work [13], we analyzed similar metrics: CK metrics [14], OO metrics, complexity metrics, and 

volume metrics; these metrics are selected basically by following the work in [13]. Values of these metrics 

were measured from the project using Understand [15]. The complexity is based on McCabe’s cyclomatic 

complexity. Table II lists the code metrics included in our analysis. 

3.4. Correlation Analysis 

The correlation analysis aimed to determine correlations between RTLs and bugs as well as to determine 

correlations between code metrics and bugs. We employed correlation coefficient analysis using Pearson’s 

correlation coefficient (r). Although Spearman’s rank correlation coefficient is robust towards a nonlinear 

association, we selected r because this research focuses on linear correlations between two objects to build 

the prediction model using multiple linear regression. 

To investigate the correlation between RTL and bugs, the class files were sorted into three groups based on 

the amount of RTLs: zero, low, and high. The division of classes was based on the RTL median. Then the 

distribution of the number of bugs in each group was analyzed and the population significance was 

determined using a Wilcoxon rank sum test between the zero group and the target group. 

To investigate the correlations between code metrics and bugs, we computed the r for each metric and 

extracted the p-value to find the significance of the correlation. Only metrics with p-values < 0.05 were 

compared. Metrics with a strong correlation with bugs were employed as predictors in the bug prediction 

model. To determine the relationship strength based on the obtained r, we used an existing categorization [7]. 

4. Analysis Results 

4.1. Number of Bugs on Class Files Grouped by RTL Type 

Fig. 2 shows that g4 followed by g6 are the class files with the highest number of bugs (by mean and 

median). Since g4 is the group of class files without Type I RTLs, we hypothesize that class files in this group 

will be difficult to maintain if their RTLs are not recovered. 

Without considering the existence of Type III and Type IV, g4 will be very costly with respect to bug fixing 

activities relative to other groups without RTLs because g4 has many bugs but lacks Type I RTLs. This 

situation makes tracing the specification of the code difficult; software engineers should establish explicit 

RTLs, which reduce the corrective maintenance cost. Similarly, Type III and Type IV RTLs should help reduce 

the corrective maintenance cost. 

TABLE II.  CODE METRICS USED 

Catg. Name Description 

CK 

WMC Count of Methods 

LCOM Percent Lack of Cohesion 

DIT Max Inheritance Tree 

CBO Count of Coupled Classes 

NOC Count of Derived Classes 

RFC Count of All Methods 

OO 

NIM Number of instance methods 

NIV Number of instance variables 

IFANIN Count of Base Classes 

Units 
Number of non-nested modules, block 

data units, and subprograms 

Comx 

MaxCyclomati

c 

Maximum cyclomatic complexity of all 

nested functions or methods. 

AvgCyclomatic 
Average cyclomatic complexity for all 

nested functions or methods 

Modified Modified cyclomatic complexity 



  

Strict Strict cyclomatic complexity 

Essential Essential complexity 

Vol 

AvgLines 
Average number of lines for all nested 

functions or methods. 

AvgCodes 

Average number of lines containing 

source code for all nested functions or 

methods. 

AvgComment 

Average number of lines containing 

comment for all nested functions or 

methods. 

AvgBlank 
Average number of blanks for all nested 

functions or methods. 

Lines Total lines in a file 

Comments Total lines with a comment  

Blanks Total lines without a comment or code 

Code Total lines with code   

ExeLines 
Number of lines containing an executable 

code 

DecLines Total lines with declarative code  

ExeStmt Number of executable statements 

DecStmt Number of declarative statements 

RatioComment Ratio of comment lines to code lines. 

 

4.2. Correlation between RTL and Bugs 

The boxplot in Fig. 3 and Table III show the difference of the number of bugs by group. Groups with more 

RTLs tend to have more bugs. The Type III RTL group shows the strongest difference. Meanwhile, the Type I 

class file groups do not differ significantly as there are only two Type I groups. This is because the company 

tried to match the requirement and class files in a 1-to-1 relationship by matching artifacts’ IDs. 

We conducted further analysis to determine which metrics contribute most to the number of bugs. Nine 

out of 28 metrics in Table II show uniform low values for the class files in the zero group without bugs (Table 

IV). The Pearson’s r between these metrics and bugs for classes in group zero with bugs indicates that only 

MaxCyclomatic has a strong correlation to the number of bugs. Thus, MaxCyclomatic is used as a metric to 

predict bugs in class files with no and low RTLs. 

 

 
 
 
 
 
 
 
 
 
 

Fig. 2. Bugs Distribution in the Class Files Grouped by RTL Type  

Wilcox p-value 
between g4 with: 
g1: 7e-4  
g2: NA 
g3: 5e-4 
g5: 13e-4 
g6: 11e-4 



  

 

Fig. 3. Number of Bugs in the Class Files having Type I RTLs (Z: zero, L: low, H: high in terms of the amount of 
RTLs) 

 

Fig. 4. Number of Bugs in the Class Files having Type III RTLs (Z: zero, L: low, H: high in terms of the amount 
of RTLs) 

 

Fig. 5. Number of Bugs in the Class Files having Type IV RTLs (Z: zero, L: low, H: high in terms of the amount 
of RTLs) 

 

 

 



  

TABLE III.  DISTRIBUTION OF THE NUMBER OF BUGS IN GROUP 

 

 

 

 

 

 

 

TABLE IV.  CORRELATION BETWEEN METRICS AND BUGS IN GROUP 

4.3. Correlation between Code Metrics and Bugs 

Of 28 code metrics in Table II, 12 have correlations with significant values < 0.05: MaxCyclomatic (0.714), 

ExeStmt (0.712), ExeLines (0.703), LOC (0.533), Strict (0.497), AvgComment (0.49), AvgCode (0.475), 

AvgLines (0.473), Modified (0.46), CBO (0.446), and Essential (0.394). 

4.4. RTL Recovery Approach Classification Application 

The correlations between RTLs and bugs are weak for Type IV and moderate for Type III. There was 

almost no correlation for Type I. Among the metrics analyzed, RTL is the second weakest, indicating that 

code metrics play a larger role for predicting bugs in class files. Consequently, only Type III RTLs and code 

metrics with moderate and strong correlations are used as predictors in the following experiment 

5. Bug Prediction Based on Relationship Analysis 

5.1. Experimental Setup 

We used a standard evaluation technique called data splitting [16] to evaluate the predictive performance. 

We randomly chose two-thirds of all class files as training data to build the prediction model, while the 

remaining one-third was used as test data. We performed 50 random splits to ensure the stability and 

repeatability of our results. 

To build the multiple regression model, we analyzed the multi-collinearity among the independent variables. 

Because the common indicator of multi-collinearity is the variance inflation factor (VIF), we removed 

metrics with VIF ≥ 4 iteratively. Hence, none of the metrics used have statistical evidence of multi-collinearity. 

The metrics with VIF < 4 after eight iterations are LOC, AvgComment, MaxCyclomatic, CBO, and the number 

of Type III RTLs since it showed the highest correlation with bugs among all types of RTL.  

Using these four metrics and RTL, we built our bug prediction models. Two types of models were 

constructed: (M1) with RTLs and (M2) without RTLs. The models’ performances were assessed via an 

Type Group Total Class Mean s.d Wilcox p-value Pearson’s r 

I 

zero 102 3.324 8.138  

-0.083 low 691 2.111 4.173 0.795 

high 0 NA NA NA 

III 

zero 26 0.5 0.99  

0.409 low 560 1.411 3.011 0.226 

high 207 4.807 7.605 6.01E-18 

IV 

zero 58 0.569 1.855  

0.384 low 629 1.943 4.092 0.001 

high 106 5.123 8.179 1.5E-15 

Catg. Metrics 
No Bugs: uniformity With Bugs: Pearson's r 

zero low zero low 

CK 
DIT Yes Yes NA 0.079 

NOC Yes Yes 0.097 NA 

OO IFANIN Yes Yes 0.097 0.066 

Comx 

Modifier Yes No 0.54 0.48 

Strict Yes No 0.44 0.5 

AvgCyclo Yes No 0.54 0.48 

MaxCyclo Yes No 0.97 0.73 

Vol 
AvgLines Yes No 0.42 0.52 

AvgComment Yes No 0.27 0.54 



  

explanatory power evaluation and a predictive power evaluation. 

To measure the quality of the model built from the training data, we computed R-square ranging from 0 to 

1 where a higher value indicates a higher explanative power.  

The evaluation of predictive power of the model is performed with accuracy and sensitivity. For the 

accuracy, we computed the root mean squared error (RMSE) to determine the difference between the 

predicted number of bugs and the actual number of bugs. We chose to use RMSE instead of MSE because 

RMSE has the same unit as the dependent variable, making the results easier to interpret. A smaller RMSE 

value indicates fewer errors and a smaller difference between the predicted and actual bugs. For the 

sensitivity, we computed the Pearson’s r to assess the correlation between the predicted bug and the actual 

bugs. The closer the absolute value is to 1, the stronger the correlation. 

5.2. Experimental Results 

Table V summarizes the results of the explanatory power (R-squared) and predictive power (RMSE and 

Pearson’s r) from the 50 random splits. The bug prediction model with or without RTLs does not perform 

strongly.  

The R-squared shows that the model with RTL performs slightly better, whereas the predictive power 

performance of the bug prediction model without RTL is slightly better according to the mean of RMSE and 

Pearson’s r. These results imply that the model with RTL is not more accurate than the model without RTL. 

Additionally, the low value of the standard deviation of the performance measures shows consistent results 

for both models. 

TABLE V.  RESULTS OF MODEL PERFORMANCE IN 50 SPLITS 

  Min Max Mean s.d. 

M1. 
With 
RTL 

R-squared 0.573 0.723 0.648 0.038 

RMSE 2.290 3.870 3.197 0.440 

Pearson’s r 0.650 0.868 0.775 0.046 

M2. 
Without 
RTL 

R-squared 0.562 0.719 0.644 0.037 

RMSE 2.300 3.880 3.159 0.437 

Pearson’s r 0.657 0.873 0.779 0.044 

6. Discussion 

6.1. Research Questions  

RQ1 Do classes that are related to more requirements as indicated by more RTLs tend to have more bugs? 

Classes related to more RTLs tend to have more bugs. This result is supported moderately by the 

correlation analysis result of Pearson’s r of 0.409 (significant below the 0.05 level). We assume that class files 

in groups zero or low have a lot of missing RTLs; it is likely that as the RTLs in these classes are recovered, 

the correlations will improve.  

RQ2 Does the type of implicit RTL recovery classification make a difference in the relationship between 

RTLs and bugs? 

The recovery classification gives better correlations between the recovered RTLs and bugs. For the current 

project, the best relationship is shown by Type III RTLs. 

RQ3 Does including RTLs affect the bug prediction model performance? 

In explanatory power, the model with RTL performed slightly better than the model without RTL. In 

predictive power, the model without RTL is slightly better than the model with RTL. However, the difference 

in the explanatory power performance is not significant. These results suggest that including RTL in the bug 

prediction model does not affect the performance, at least for the current project. 

6.2. Usage of Findings 



  

Establishing RTLs explicitly helps trace the code from the class files to the requirements, improving the 

efficiency of fixing bugs. Moreover, engineers should be better able to allocate their resources more 

effectively as it should be intuitive that class files with more RTLs will likely have more bugs than class files 

with fewer RTLs.   

 With the proposed RTL recovery classification approach, we grouped the class files based on the 

existence of RTLs by type to confirm which groups are in endangered states and whether they are 

maintained easily. Our findings indicate that software engineers should be aware of the maximum cyclomatic 

complexity of class files that they are developing because this will lead to bug-prone class files. 

6.3. Threats to Validity 

External Validity: The analysis results and the current prediction model cannot be generalized beyond the 

specific software used in the experiment. Consequently, validation using other software projects is necessary. 

Internal Validity: As we have speculated, the data of current project where we suspected that the 

established RTLs are incomplete or missing, it was challenging to determine a strong relationship between 

RTLs and bugs.  

Statistical Validity: All the results from the analysis and experimental study, including the performance of 

the bug prediction model, are significant below the 0.05 level. 

7. Related Works 

[6] demonstrated that crosscutting concerns do cause defects by examining three small-sized to 

medium-sized Java® open-source projects. While [6] focuses on crosscutting concerns, our work focuses on 

analyzing tangling concerns indirectly. [6] suggested a method to realize software reliability by modularizing 

crosscutting concerns, while our work suggests that software developers establish RTLs, which are used to 

predict bugs, in order to estimate the maintenance costs. If RTLs are not established during development, we 

suggest using our proposed approach to recover implicit RTLs. 

Many researches [13][17-22] examined bug prediction models using code metrics. One standard set of 

metrics is the Chidamber and Kemerer (CK) metrics suite, which is used in [17, 18][21, 22]. The bug 

prediction models built in [13][19, 20] used other code metrics as predictors, while [14] found that no 

predictor could perform well except for in the project it was originally designed. In [13], Marco D’Ambros et 

al. compared the performance of models with CK alone, OO alone, CK + OO, and LOC alone as predictors. They 

found that the model with CK + OO metrics exhibit the best predictor performance. 

8. Conclusion and Future Work 

There is a moderate correlation between RTLs and bugs. Some class files with no and low RTLs also have 

bugs. We hypothesize that this occurs because the actual RTL is missing or not established, which is 

supported by the observation that bugs in these classes are highly correlated with maximum cyclomatics. 

Our findings suggest that RTL is missing for these class files having a high maximum complexity since they 

must implement at least one requirement. Hence, implementing an explicit RTL recovery tool is 

recommended as it helps reduce the corrective maintenance phase for class files with many bugs. On the 

other hand, including RTL in a bug prediction model does not affect the model performance.  

In the future, we plan to investigate which bugs on class files in g4 (Section 4) are actually caused by 

missing links to strengthen our suggestions about the importance of explicit RTL. Then, we plan to recover 

the real Type IV RTLs on the same software and repeat the analysis to see whether it makes difference result. 

We also plan to replicate the analysis for different datasets from software. Moreover we plan to employ other 

models for bug prediction such as machine-learning ones in addition to multiple linear regression. 
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