
 A security pattern for honeypots

Eduardo B. Fernandez, Elias Bou-Harb, and Virginia Romero

Dept. of Computer and Electr. Eng. and Comp. Science

Florida Atlantic University

Boca Raton, FL 33431, USA

Intent

Attract attacks generated by intruders to understand and capture their intentions, mechanisms,

strategies and potential for success in order to prepare better to defend against these attacks.

Attackers are lured by mimicking internal, typically sensitive services.

Context

Systems and corporate networks connected to the Internet.

.

Problem

On one hand, corporate networks and their corresponding services are constantly being attacked.

When attackers bypass the external defense mechanisms, they can easily target any internal

service. There is a critical need to defend against such attempts to protect the real operational

services and to alert against an infiltrated attacker (Even 2017).

On the other hand, it is often hard to derive the modus operandi (attack signatures) for novel and

complex attacks. This is especially factual when operating in less explored or constrained

environments such as power grids or manufacturing plants. We need a way to detect those attacks

in real time.

Forces

• Extensibility and Flexibility—ability to promptly add or modify certain features and/or

protocols to reflect new mimicked services, which help lure more attackers or attract

attackers infiltrating different realms.

• Usability—the software should be easy to install, configure, manage and its reporting

should be comprehensive and actionable.

• Legitimacy as network assets/resource—the software should closely mimic the services

desired to be protected; from an attacker perspective, the honeypot should appear as a

typical legitimate operational service.

• Mingling Factor—the detection device should communicate with other assets on the

network to contribute to its deception characteristics.

• Exploitation resilience—the detection device should lure attackers but prevent its

components from complete system exploitation.

• Alerting and Logging—any connection attempt must produce an alert and should be logged.

• Reporting: a honeypot must provide clear and actionable reports of the detected attacks in

an appropriate, non-proprietary format.

Solution

Place an easy and appealing target, a honeypot, to attract attacks and lure intruders, so we can

assess (i.e., infer, characterize, mitigate, and attribute) them and prepare ways to halt them.

A honeypot, when configured with services operating in such realms, could be used to capture

significant attack strategies, intentions and mechanisms to aid in deriving effective attack

signatures that can be used for detection, mitigation, and attribution, as well as to indicate possible

defenses.

Structure

Figure 1 shows the class diagram of this pattern. The Honeypot includes several Service Proxies

that represent real Services provided by the local Server. When the Attacker attempts to access any

of these proxies the Attack Detector captures its Signature which is placed in the Attack Signature

Catalog. The Attack Detector activates an Alert for the system administrator and keeps a Log of

each event received during the attack. Reports are generated at periodic intervals from the Log.

 Figure 1. Class diagram of the Honeypot pattern

Dynamics

Figure 2 shows a use case for detecting an attack. When the Attacker tries to access a service

through its Proxy, the Attack detector captures its signature, registers it in the Log, and creates an

Alert. This signature can be used later to recognize another instance of the attack.

Attacker ServerHoneypot

Service

Proxy
Service

*

*

11

1

requestService

*

attackService

1*

simulates

Attack

Detector

1

*
redirectAttacks

Attack

Signature

Catalog

1

*

Signature

Alert

*

Log

Report

1

1

*

1

Implementation

You can configure and deploy honeypots internally, as an additional layer of protection.

Investigate how and where past attacks have succeeded. Generate threat models from past and

novel attacks and try to characterize future possible attacks. Determine where you have gaps in

your current detection methodologies and deploy tailored honeypots to meditate those gaps (Even

2017, Grimes 2016).

Build attack signatures that aim at reducing both, false positives and false negatives. This is

especially important when deployed in non-traditional environments such as cyber-physical

systems (i.e., power stations, manufacturing plans, cargo terminals, etc.).

Honey Pots are typically deployed inside a firewall or inside the DMZ . They should appear to be

standard services to avoid the attacker’s suspicions. The idea is that the attacker returns so we can

collect more information about his probing (Even 2017).

 Figure 2. Sequence diagram for use case Detect Attack

Known uses

• KFSensor is pre-configured to monitor all TCP and UDP ports, along with ICMP

[KFSensor]. It is also configured with the emulation of common services. KFSensor is

considered to be one of the best in [Grimes 2010].

• Honeyd is an open source honeypot [Provos].

• OpenCanary [Canary] is another open source honeypot, which exceeds Honeyd by its ease

of use and configuration, and actionable reporting features.

• Conpot [Conpot] is an open source honeypot specifically tailored towards industrial control

systems.

: Attacker : Service

Proxy

: Attack

Detector

: Attack

Signatures

: Log

: Alert

request

(Service)
request

(Service) detect
(Signature)

log
(Signature)

create

Consequences

• Extensibility and Flexibility—a honeypot will effectively be able to mimic diverse and

tailored services to increase the detection rate.

• Usability—a well-thought interface can achieve usability.

• Legitimacy as network assets/resource—the honeypot will increase its detection rate by

optimizing its deception characteristics.

• Mingling Factor—the honeypot will lure more attackers, which also increases its detection

and protection rate.

• Exploitation resilience—the honeypot will be able to handle more attackers, thus increasing

its protection rate.

• Alerting and Logging—the honeypot will be able to effectively alert concerned parties

about an ongoing attack for effective mitigation and use logged data for future planning.

• Reporting: the honeypot will be able to generate cyber threat intelligence that can

effectively be used in long-term analysis and actionable thwarting of attacks.

Related patterns

• Intrusion Detection Systems (IDS) [Fernandez 2013]. IDSs detect and report attacks in real

time by employing various inference engines, which could rely on signatures, behavioral

analysis or a combination of those. A honeypot, in contrast, adopts the concept of detection

by deception, which adds a complementary layer to the defense strategy.

• The Log is a special case of the Security Logger/Auditor [Fernandez 2013]. A Logger keeps

track of user’s actions in order to determine who did what and when. It also provides

controlled access to its records for Audit purposes.

• The Service Proxy is a variety of the Proxy pattern of [Gamma et al. 1994]. A Proxy

represents an object and controls access to it.

Acknowledgements

We thank our shepherd, Shinpei Hayashi, for his valuable comments that significantly improved

our paper.

References

Canary. Canary: Bring back the Honeypots.

http://thinkst.com/stuff/bh2015/thinkst_BH_2015_notes.pdf

Conpot. Conpot: ICS honeypot. http://thinkst.com/stuff/bh2015/thinkst_BH_2015_notes.pdf

L.R.Even, “Honey Pot systems explained”, https://www.sans.org/security-resources/idfaq/what-

is-a-honeypot/1/9

E.B.Fernandez, “Security patterns in practice: Building secure architectures using software

patterns”, Wiley Series on Software Design Patterns, 2013.

E. Gamma, R. Helm,R. Johnson, and J. Vlissides, Design patterns –Elements of

 reusable object-oriented software, Addison-Wesley 1994.

R.A.Grimes, “Intrusion detection honeypots simplify network security”, InfoWorld, Nov. 17,

2010, http://www.infoworld.com/article/2624430/intrusion-detection/intrusion-detection-

honeypots-simplify-network-security.html (last accessed Jan. 03, 2017)

R.A.Grimes, “Spread honeypots over your defense plan”, InfoWorld, March 29, 2016

http://www.infoworld.com/search?query=honeypots&contentType=article%2Cresource

(last accessed Jan. 03, 2017)

KFSensor. KFSensor, Advanced Windows Honeypot System, http://www.keyfocus.net/kfsensor/

Niels Provos, “Honeyd: A Virtual Honeypot Daemon” (Extended Abstract),

http://metro.citi.umich.edu/u/provos/papers/honeyd-eabstract.pdf

