
Evaluating the Work of Experienced and Inexperienced Developers

Considering Work Difficulty in Software Development

Taketo Tsunoda, Hironori Washizaki, Yosiaki Fukazawa

Department of Computer Science and

Engineering Waseda University

Tokyo, Japan

Email:tsunoda_q1ll@asagi.waseda.jp

{washizaki, fukazawa}@waseda.jp

Sakae Inoue, Yoshiiku Hanai, Masanobu Kanazawa,

Fujitsu Connected Technologies Limited

Kanagawa, Japan

Email: {inoue.sakae, hanai.yoshiiku,

kanazawa.masano}@jp.fujitsu.com

Abstract—Previous studies have researched how developer

experience affects code quality, but they ignore work difficulty,

although experienced developers are more likely to work on

the more complex parts of a project. To examine work

difficulty, we focus on revised files. Using product metrics, we

evaluate file complexity in each type of file origin. Specifically,

we analyze three large commercial projects (each project has

about 250,000 LOC) executed by the same organization to

analyze the relationship between previous project experience

and developer’s work. Although experienced developers do

not always work on more complicated files, they introduce

fewer defects, especially if the difference in work difficulty is

not significant.

Keywords—Experience; Product Metrics; Organization

change; Software quality;

I. INTRODUCTION

In software projects, work should be distributed to the

appropriate developers. Some studies have suggested

methods to determine experts in a particular domain [14],

their roles [6], and developer relationships [16]. These

studies are helpful to understand the main contributor in a

specified domain and assign jobs. In addition, previous

studies have researched the correlation between developer

experience and code quality [2], [3], [5], [7], but the defect

tendency of a developer depends on the file complexity.

Some previous works have suggested that experienced

developers are more defect-prone because they often work

in the most complex regions [5], [7]. Consequently, to

fairly evaluate developers, the work difficulty needs to be

evaluated.

In this study, we analyze three large commercial projects

executed by the same organization to examine the

relationship between experience and defects considering

work difficulty. Work difficulty is determined by

classifying the files according to their origin, while file

complexity is evaluated using product metrics. This study

makes the following contributions:

1. Developers who are unfamiliar with previous projects tend

to introduce more defects even if the files are not complex.

2. Experienced developers do not always work on more

complicated files or introduce fewer defects. However,

when considering similar work difficulty, experienced

developers introduce fewer defects.

3. Most developers do not introduce many defects, but in all

three projects, those who introduced the most defects were

responsible for the most complex files.

II. RELATED WORKS

Previous studies indicate that developer experience

affects software quality. Eyolfson researched the

correlation between developer experience (by days on a

project) and defect tendency [5]. They found that the

number of bugs decreases as author experience increases,

but a more experienced programmer is not necessarily less

buggy. Rahman researched how specific experience in a

target file and general experience are related to defects [2];

general experience is note related to a defect, but specific

experience is closely related. Additionally, Ando defined

the developer EXP using several projects and researched

the correlation between defect and EXP [7]. They

suggested that other factors such as work difficulty affect

the defect tendency. In the contrast to previous studies, we

investigate the difference between experienced and

inexperienced developers while considering file complexity.

III. BACKGROUND

A. SZZ Algorithm

A bug tracking system can easily identify who fixed a

bug, but it cannot indicate who introduced a bug. To solve

this problem, we adopt the “SZZ algorithm” suggested by

Sliwerski [11], which assumes that bug-fix-change fixes the

bad code, which is also the cause of the defect. Thus, if we

specify the location that is changed by the bug-fix and

when each line is created, we automatically identify the bug

introduced change. The SZZ algorithm uses SVN and a bug

tracking system.

TABLE I. FILE ORIGINS WHEN THREE ORGANIZATIONS ARE

INVOLVED

File Ox O y Oz
Number of

Organizations

f1 Create Modify Modify 3

f2 Create Modify 2

f3 Create Modify 2

f4 Create 1

Our method employs the following steps:

1. Retrieve the bug fix revision from the bug tracking system.

2. Use diff command to specify which lines are changed.

3. Use VCS annotate command to examine when the changed

lines are created.

In addition, the rules below are added upon considering

Kim’s research [12].

1. Ignore comment changes.

2. Ignore format and blank line changes.

3. Ignore outlier bug-fix commits in which too many files

were changed.

B. File Origin and Metrics

The file origin means how many organizations have

modified the files in the past. Often another organization

takes over the development of a software project. Table 1

shows how many organizations are related to the each file

(Number of Organizations) in this study. Each organization,

from Ox to Oz, edits the file in chronological order. For

example, Oy and Oz modified file f1 originally created by

Ox; thus, the Number of Organizations of f1is 3. Sato

indicated that a file related to several organizations has

higher product metrics values and is more prone to defects

[13]. Because our research is also related to three

organizations, we classify the files according to the

Number of Organizations. In addition, we adopt two

representative product metrics, lines of code (LOC) and

number of functions and methods defined in other files that

a file calls (Call Number), to evaluate the file complexity.

In our preliminary survey, inexperienced developers

working on files related to several organizations and files

with high metrics values are similar to experienced

developers. In this research, we investigate whether there

are differences in code quality and complexity between

experienced and inexperienced developers using the defects

and two product metrics for some origins.

IV. EVALUATION AND RESULTS

To investigate the difference between experienced and

inexperienced developers, we analyzed developers who

participated in three large commercial projects (each

project has about 250,000 LOC and 200 developers)

executed by the same organization. Based on chronological

order, the projects are called A, B, and C. It should be

noted that each project development was taken over by

another organization before the project started similar to

using a framework or open source developed by other

organizations. Therefore, each file has its own origin.

Additionally, these projects release the successor model in

the previous projects. About half of the developers

participated in the next project, and many files were passed

down to the next project (A to B or B to C).

Fig. 1. Defect Rate of inherited files

We call such passed down files “inherited files”. Because

some developers do not participate in the next project,

some files are edited by developers inexperienced with

such files (file-experience) in the previous projects. We

hypothesized that files edited by developers without file-

experience are more likely to contain defects. In addition,

we researched the difference between files edited by

developers with and without experience on previous

projects. In this research, we analyze all files, including

“inherited files” and “new files”. Finally, we examine

whether the same developers introduce many defects in

each project and whether each project has its own features.

We propose the following researching questions:

RQ1) Do defect tendency and complexity of inherited

files vary with file-experienced developer participation?

RQ2) Do experienced developers introduce fewer defects

or work on more complicated files?

RQ3) Does the same developer introduce many defects in
each project? What are the features of these developers?

A. RQ1-1 Does defect proness of inherited files vary with

file-experienced developer participation?

 Figure 1 shows the rate of defect files in the inherited

files. A defect file means that at least one defect is

introduced. The x-axis indicates the number of related

organizations and experienced group denotes whether the

files are revised by file-experienced developers at least

once. The findings do not support our hypothesis as the

experience group introduced more defects.

B. RQ1-2 Does the complexity of inherited files vary with

file-experienced developer participation?

Figure 2 shows the metrics values of inherited files. In

projects A and B, experienced groups have high metrics.

Table 2 indicates that the Wilcoxon rank sum test with the

alternative hypothesis set to “files edited by a file-

experienced developer have higher product metrics than

other inherited files in each type of origin (Number of

organizations)”. It shows that the most of the P-value are

low. Although files edited by file-experienced developers

are more defective, they are more complicated than the

other inherited files.

0.00

0.05

0.10

0.15

1 2 3

Number of Organizations

D
e

fe
c
t

R
a

te

group

experienced
inexperienced

Project B

0.0

0.1

0.2

0.3

1 2 3

Number of Organizations

D
e
fe

c
t

R
a
te

group

experienced
inexperienced

Project C

TABLE II. WILCOXON RANK SUM TEST IN RQ1-2

Project Number of organizations LOC Call Number

B

1 P<<0.01 P<0.05

2 P<<0.01 P<<0.01

3 P<<0.01 P<<0.01

C

1 0.8 P<<0.01

2 P<<0.01 P<0.01

3 P<<0.01 P<<0.01

Fig. 2. Product metrics of inherited files

Fig. 3. Defect rate of files edited by a single developer

C. RQ2-1 Do experienced developers introduce fewer

when they edit files alone?

Figure 3 shows the rate of defect files edited by a single

developer. An experienced developer means that the

developer worked on a previous project. In some cases,

experienced developers introduced slightly more defects,

but in many cases, they introduced fewer defects, especially

if related with all three organizations. Thus, if a developer

solely edits a file, few defects are introduced on the whole.

However, inexperienced developers tend to introduce more

defects in complex files due to the lack of experience.

D. RQ2-2 Do experienced developers work on more

complicated files when editing files alone?

Figure 4 shows the product metrics of files edited by a

single developer. In addition, Table 3 indicates that the

Wilcoxon rank sum test with the alternative hypothesis set

TABLE III. WILCOXON RANK SUM TEST IN RQ2-2

Project Number of organizations LOC Call Number

B

1 P<0.05 0.9

2 P<0.05 0.3

3 0.7 0.9

C

1 1 P<<0.01

2 P<0.05 0.8

3 P<<0.01 0.1

Fig. 4. Defect rate of files edited by a single developer

Fig. 5. Defect rate of files edited by several developers

to “experienced developers work on higher metrics files in

each type of origin”. Experienced developers do not work

on more complicated files, and there is not a significant

difference between experienced and inexperienced

developers.

E. RQ2-3 Do experienced developers introduce fewer

defects when they edit files with the other developers?

Figure 5 shows the rate of defect files edited by several

developers. In each group, “experienced group” means that

files are revised by experienced developers at least once. In

the experienced group, only defects introduced by

“experienced developers” are considered. Similarly, only

defects introduced by “inexperienced developers” are

considered in the inexperienced group. The experienced

group introduced more defects in project B.

0

1000

2000

3000

4000

5000

1 2 3

Number of Organizations

L
O

C group

experienced
inexperienced

Project B

0

1000

2000

3000

4000

5000

1 2 3

Number of Organizations

L
O

C group

experienced
inexperienced

Project C

0

50

100

150

200

1 2 3

Number of Organizations

C
a

ll
N

u
m

b
e
r

group

experienced
inexperienced

Project B

0

50

100

150

200

1 2 3

Number of Organizations

C
a
ll

N
u
m

b
e
r

group

experienced
inexperienced

Project C

0.00

0.02

0.04

0.06

0.08

1 2 3

Number of Organizations

D
e

fe
c
t

R
a

te

group

experienced
inexperienced

Project B

0.00

0.01

0.02

0.03

0.04

1 2 3

Number of Organizations

D
e
fe

c
t

R
a
te

group

experienced
inexperienced

Project C

0

1000

2000

3000

4000

5000

1 2 3

Number of Organizations

L
O

C group

experienced
inexperienced

Project B

0

1000

2000

3000

4000

5000

1 2 3

Number of Organizations

L
O

C group

experienced
inexperienced

Project C

0

50

100

150

200

1 2 3

Number of Organizations

C
a
ll

N
u
m

b
e
r

group

experienced
inexperienced

Project B

0

50

100

150

200

1 2 3

Number of Organizations

C
a

ll
N

u
m

b
e
r

group

experienced
inexperienced

Project C

0.0

0.1

0.2

1 2 3

Number of Organizations

D
e

fe
c
t

R
a

te

group

experienced
inexperienced

Project B

0.00

0.05

0.10

0.15

0.20

0.25

1 2 3

Number of Organizations

D
e
fe

c
t

R
a
te

group

experienced
inexperienced

Project C

TABLE IV. WILCOXON RANK SUM TEST IN RQ2-4

Project Number of organizations LOC Call Number

B

1 P<<0.01 P<0.05

2 P<0.05 P<0.01

3 P<0.01 P<0.05

C

1 0.9 0.15

2 0.9 0.12

3 0.06 P<0.05

TABLE V. WILCOXON RANK SUM TEST IN RQ2-5

Project Number of organizations Contributing Rate

B

1 P<<0.01

2 P<<0.01

3 P<<0.01

C

1 P<<0.01

2 0.9

3 0.6

Fig. 6. Product metrics of files edited by several developers

In addition, the experienced group introduced more

defects in both projects when the three organizations are

related. This is a contradiction to the results of RQ2-1.

However, it is possible that files related to three

organizations and several developers induce more defects

regardless of developer experience.

F. RQ2-4 Do experienced developers work on more

complicated files when they edit files with the other

developers?

Figure 6 shows the product metrics of files edited by

several developers, while Table 4 represents the Wilcoxon

rank sum test with the alternative hypothesis set to

“inexperienced developers work on higher metrics files in

each type of origin”. Experienced developers do not work

on complicated files in all projects. In project B,

inexperienced developers worked on more complicated

files.

Fig. 7. Contribution rate of experienced developers

Fig. 8. Contribution rate of inexperienced developers

Fig. 9. Transition of the developer introducing defects

G. RQ2-5 Do experienced developers contribute more to

the files edited by several developers?

Figure 7 and Figure 8 show how many times

experienced and inexperienced developers modified the

files edited by several developers compared with the

number of total file changes. Table 5 shows the Wilcoxon

rank sum test with the alternative hypothesis set to

“experienced developers contribute more to files in each

type of origin”. There is not a significant difference

between experienced and inexperienced developers in

project C, but experienced developers contribute more in

project B. These results indicate that inexperienced

developers introduce fewer defects and work on more

complicated files, but they do not contribute much to these

files. In project C, the differences in complexity and

contribution developer experience are insignificant. Hence,

experienced developers introduce fewer defects in some

origins.

H. RQ3-1 Do the same developers introduce many defects

in each project?

Figure 9 shows the number of defects by developer who

participated in the projects continuously. The x-axis means

each developer, while the y-axis shows the number of

0

1000

2000

3000

4000

5000

1 2 3

Number of Organizations

L
O

C group

experienced
inexperienced

Project B

0

1000

2000

3000

4000

5000

1 2 3

Number of Organizations

L
O

C group

experienced
inexperienced

Project C

0

50

100

150

200

1 2 3

Number of Organizations

C
a
ll

N
u
m

b
e
r

group

experienced
inexperienced

Project B

0

50

100

150

200

1 2 3

Number of Organizations

C
a

ll
N

u
m

b
e
r

group

experienced
inexperienced

Project C

0.25

0.50

0.75

1.00

1 2 3

Number of Organizations

C
o
n
tr

ib
u
ti
n
g
 R

a
te

Developer Number

2
3,4
5-

Project B

0.00

0.25

0.50

0.75

1.00

1 2 3

Number of Organizations

C
o
n
tr

ib
u
ti
n
g
 R

a
te

Developer Number

2
3,4
5-

Project C

0.00

0.25

0.50

0.75

1.00

1 2 3

Number of Organizations

C
o
n
tr

ib
u
ti
n
g
 R

a
te

Developer Number

2
3,4
5-

Project B

0.25

0.50

0.75

1.00

1 2 3

Number of Organizations

C
o
n
tr

ib
u
ti
n
g
 R

a
te

Developer Number

2
3,4
5-

Project C

0

10

20

30

40

0 50 100

Developer

D
e
fe

c
t

group

previous project
next project

Project B

0

5

10

15

0 25 50 75 100

Developer

D
e
fe

c
t

group

previous project
next project

Project C

introduced defects. If developer X fixes two files to remedy

a bug and both files are written by developer Y, we

consider that developer Y introduced one defect. This

graph indicates that developers, who did not introduce or

only introduced a few defects, introduce many defects in

the next projects. Therefore, introducing many defects in a

previous project is not an indicator of introducing many

defects in the next project.

I. RQ3-2 Does a developer who introduces many defects

in all project work on complex parts?

In the three projects, most developers did not

consistently introduce many defects. However “one

developer” introduced many defects in all projects, and was

the most defective developer in project A and B. He was

responsible for the inherited files with the highest metrics

values for both LOC and Call number in all projects. In

these files, many defects were introduced in each project.

However, as he gained experience, the number of

introduced defects decreased, and in project C, he

introduced about half the number of defects compared to

the most defective developer in project C. We speculate

that a developer who takes charge of the most complicated

files perhaps introduces many defects, but the number of

introduced defects decreases as he gains “experience” in

the specified domain.

V. THREATS TO VALIDITY

One threat to internal validity is that only three projects

were considered. Although experience in previous projects

was considered, we did not consider whether they work on

the same domain in the next project. In the future, we need

to confirm whether most developers work in similar

domains in the next project. Additionally, we examined the

defect, two metrics, and some experience, but these factors

only capture part of the code quality, complexity, and

experience. In the future, we need to investigate other

factors.

A threat to the external validity is that we analyzed

three projects executed by a single organization. Although

we hypothesize that the results will be applicable to

continuous projects executed by other organizations, we

need to confirm that the same features appear in other

projects.

VI. CONCLUSION AND FUTUREWORK

This research reveals that experienced developers do

not always work on more complex files or introduce fewer

defects. However, they introduce a fewer defects than

inexperienced developers in some case, especially when

there are not significant differences in the work complexity.

Additionally, the most defective developer was responsible

for the most complex files, but the number of defects

decreases with experience. However, we did not confirm

that experience affects the code quality.

In the future, we want to investigate which domain truly

requires reliable knowledge or experience as this should

lead to more effective strategies when managing developers.

REFERENCES

[1] Thomas Fritzy, Gail C. Murphyy, Emily Hill, "Does a

programmer's activity indicate knowledge of code,"

Proceedings of the 6th joint meeting of the European

software engineering conference and the ACM SIGSOFT

symposium on The foundations of software engineering ,

2007, pp. 289-300.

[2] Foyzur Rahman, Premkumar Devanbu, “Ownership,

experience and defects: a fine-grained study of authorship,”

Proceedings of the 33rd International Conference on

Software Engineering, 2011 pp. 491–500.

[3] Audris Mockus, David M. Weiss, “Predicting risk of

software changes, Bell Labs Technical Journal, vol. 5, no. 2,

2000 pp. 169-180

[4] Christian Bird, Nachiappan Nagappan, Brendan Murphy et

al., “Don’t Touch My Code! Examining the Effects of

Ownership on Software Quality,” Proceedings of the 19th

ACM SIGSOFT symposium and the 13th European

conference on Foundations of software engineering, 2011,

pp.4-14.

[5] Jon Eyolfson, Lin Tan, Patrick Lam, “Do Time of Day and

Developer Experience Affect Commit Bugginess?”

Proceedings of the 8th Working Conference on Mining

Software Repositories, 2011, pp. 153-162.

[6] Pamela Bhattacharya, Iulian Neamtiu, Michalis Faloutsos,”

Determining Developers’ Determining Developers’ Expertise

and Role: A Graph Hierarchy-based Approach”, Proceedings

of the 30th International Conference on Software

Maintenance and Evolution (ICSME 2014), 2014, pp. 11-20.

[7] Reou Ando, Seiji Sato, Chihiro Uchida, Hironori Washizaki

et al., “How Does Defect Removal Activity of Developer

Vary with Development Experience?” Proceedings of the

27th International Conference on Software Engineering and

Knowledge Engineering (SEKE 2015), 2015, pp. 540-545.

[8] Ekrem Kocaguneli, Ayse T. Misirli, Bora Caglayan, Ayse

Bener, ”Experiences on Developer Participation and Effort

Estimation” Proceedings of the 37th EUROMICRO

Conference on Software Engineering and Advanced

Applications, 2011, pp. 419 – 422.

[9] Shinsuke Matsumoto, Yasutaka Kamei, Akito Monden et al.,

“An Analysis of Developer Metrics for Fault Prediction,”

Proceedings of the 6th International Conference on

Predictive Models in Software Engineering, No.18, 2010

[10] Thomas J. Ostrand, Elaine J. Weyuker, Robert M. Bell,

“Programmer-based Fault Prediction,” Proceedings of the 6th

International Conference on Predictive Models in Software

Engineering, No.19, 2010.

[11] Jacek Sliwerski, Thomas Zimmermann, Andreas Zeller,

“When Do Changes Induce Fixes?” Proceedings of the 2005

international workshop on Mining software repositories,

2005 pp.1-5.

[12] Sunghun Kim, Thomas Zimmermann, Kai Pan, E. James

Whitehead, “Automatic Identification of Bug-Introducing

Changes”, Proceedings of the 21st IEEE/ACM International

Conference on Automated Software Engineering, 2006, pp.

81-90.

[13] Seiji Sato, Hironori Washizaki, Yoshiaki Fukazawa et al.,

“Effects of Organizational Changes on Product Metrics and

Defects,” Proceedings of the 20th Asia-Pacific Software

Engineering Conference, 2013, pp.132-139.

[14] Renuka Sindhgatta, “Identifying domain expertise of

developers from source code”, Proceedings of the 14th ACM

SIGKDD international conference on Knowledge discovery

and data mining, 2008, pp. 981-989.

[15] Audris Mockus, “Organizational volatility and its effects on

software defects,” Proceedings of the 18th ACM SIGSOFT

international symposium on Foundations of software

engineering, 2010, pp. 117–126.

[16] Mitchell Joblin ,Wolfgang Mauerer et al., “From Developer

Networks to Verified Communities: A Fine-Grained

Approach” Proceedings of the 37th International Conference

on Software Engineering - Volume 1, 2015 pp. 563-573

