

Title: Pitfalls and Countermeasures in Software Quality Measurements and Evaluations

Author: Hiroshi Washisaki

Affiliation: Waseda University / National Institute of Informatics / SYSTEM INFORMATION

Contact: washizaki@waseda.jp, Waseda University, 3-4-1 Ohkubo, Shijuku-ku, 169-8555 Tokyo,

JAPAN

Abstract

This chapter discusses common pitfalls and their countermeasures in software quality measurements

and evaluations based on research and practical achievements. The pitfalls include negative

Hawthorne effects, organization misalignment, uncertain future, and self-certified quality.

Corresponding countermeasures include goal-oriented multidimensional measurements, alignment

visualization and exhaustive identification of rationales, prediction incorporating uncertainty and

machine-learning based measurement improvement, and standard/pattern-based evaluation.

Keywords

Software measurement, software metrics, software quality, goal-orientation, GQM, ISO/IEC 25000,

SEMAT, software patterns

1. Introduction

Measurements to evaluate quality are essential to specify, manage, and improve the quality of

product in software developments. However, a development project may become worse, such as a

misleading conclusion, if the measurement program is not properly adopted. This chapter discusses

common pitfalls and their countermeasures in software quality measurements and evaluations based

on research and practical achievements at the Global Software Engineering Laboratory (PI: Prof.

Hironori Washizaki) of Waseda University in collaboration with many software companies [GSE].

Table 1 summarizes the specific pitfalls addressed and their corresponding countermeasures.

Table 1. Pitfalls and countermeasures in quality measurements and evaluations

Pitfall Countermeasure

Negative Hawthorne effects
Goal-orientation

Multidimensional measurements

Organization misalignment

Visualization of relationships among organizational goals,

strategies, and measurements

Exhaustive identification of rationales

Uncertain future
Prediction incorporating uncertainty

Measurement program improvement by machine learning

Self-certified quality
Standard-based evaluation

Pattern-based evaluation

2. Pitfall: Negative Hawthorne effects

Measurements are so powerful that they drive peopleôs behavior. This phenomenon is known as the

Hawthorne effect (or the observer effect). It was derived from famous extensive productivity

research conducted at the Western Electric/AT&T Hawthorne plant between 1924 and 1932, which

confirmed that whatever management paid attention to and measured improved [Linda06].

 Thus, measurements should be carefully employed in software development and quality

management to help stakeholders focus on what is truly important. Otherwise, quality may improve

with regard to the measurements, while quality of aspects not measured may decline at the expense

of the overall quality. This is a common symptom when a measurement program is build based on

available data or what is of most interest to the metrics engineer [Linda06].

 There are at least two countermeasures to prevent negative Hawthorne effects: goal-orientation and

multidimensional measurements. The former contributes to clarifying the focus and corresponding

measurements, while the latter incorporates various aspects to ensure total quality.

2.1. Countermeasure: Goal-orientation

 Goal-orientation is a generic term for approaches involving goal setting and variable derivation in a

top-down manner. Goal-Question-Metrics (GQM, hereafter) is a goal-oriented approach to define a

measurement program from the top goal [Basili02]. GQM takes the following three steps to define a

measurement program [Linda06]:

(1) Identify the Goal for the product/process/resource from the viewpoint of the actual ñcustomerò of

the measurement program.

(2) Determine the Questions that characterize how achievement of the goal is assessed.

(3) Define the Metrics that quantitatively answer each question.

 GQM is particularly useful to capture the nature of software quality since quality is an abstract and

inherently invisible concept. Applying GQM makes it much easier to focus on what is truly

important for the ñcustomerò and build a measurement program based on the goal instead of

available data. Consequently, GQM may mitigate the possibility of negative Hawthorne effects and

turn them into positive ones.

 There are many successful cases of GQM adoption in software quality measurements, including:

 ̧ OGIS-RI Co. and GSE jointly built a static analysis and measurement tool called Adqua to

evaluate the quality of embedded program source codes written in C language. Measurements

in Adqua have been identified using GQM and the ISO9126-1 quality model [Washizaki07].

The GQM model consists of ten goals to evaluate quality sub-characteristics, 47 questions, 101

sub-questions, and 236 metrics. Figure 1 shows an excerpt of the model. For example, several

language-independent questions (e.g., Q3700) help to evaluate how easily the source code is

analyzed. Because Q3700 is quite abstract and difficult to measure directly, it is divided into

several sub-questions, including Q3701 and Q3702. Finally, metrics are assigned to each

sub-question, allowing useful data to assess the goal to be obtained. The single metric, MFn095,

is assigned to Q3701, and three metrics, MFn066, MFn072 and MFn069, are assigned to Q3702.

Thus, the source code quality can be evaluated via quality-sub-characteristic units from the

measurement. By conducting experiments targeting several embedded programs, it has been

confirmed that Adqua can be used effectively to evaluate programs for reliability,

maintainability, reusability, and portability. Adqua has been used to evaluate embedded

programs in Japan successfully for over five years.

 ̧ GSE, OGIS-RI Co. and Yamaha Corporation extended the above-mentioned tool to evaluate the

reusability of C language program source code more precisely by adopting GQM to identify a

set of metrics [Washizaki12]. By applying the tool to ten actual projects involving the

development of existing software modifications and adoptions, it has been confirmed that these

metrics effectively reflect and estimate the magnitude of necessary effort to reuse a target.

 ̧ GSE and FUJITSU CONNECTED TECHNOLOGIES investigated the impact of software

transfer from one development organization to another organization on software maintainability

and reliability by introducing the concept of ñoriginsò as filesô creation and modification

histories [Sato13]. They adopted GQM to specify necessary measurements to determine

maintainability and reliability under the context of software transfer. Figure 2 shows the GQM

model constructed by setting goals to evaluate specific quality characteristics. Measurements

are from the static analysis tool Adqua. By analyzing two open source projects, OpenOffice and

VirtualBox, which were each developed by a total of three organizations, the results show that

files modified by multiple organizations or developed by later organizations tend to be faultier

due to the increase in complexity and modification frequency. The concept of origins as well as

the measurements specified have been utilized to investigate the impact of individual

developerôs experience on the software quality [Ando15][Tsunoda17] and to support the overall

comprehension of large programs with long histories involving transfers [Ishizue16]. Figure 3

shows an example of ñOrigin Cityò, which represents the measurement values for files with

different origins in the form of stacked 3D buildings [Ishizue16].

Figure 1: GQM model to evaluate the quality of C programs (excerpt) [Washizaki07]

Figure 2: GQM model to evaluate the reliability and maintainability of programs [Sato13]

Figure 3: Example of Origin City [Ishizue16]

2.2. Countermeasure: Multidimensional measurements

 Beside goal-oriented measurements, it is also important to measure and evaluate targets

multidimensionally to cover various aspects and ensure total quality since any feature may have side

effects or unintended quality characteristics. A typical example is the trade-off between

maintainability and performance (i.e., time behavior); a program tuned for computing performance

may be less comprehensible for human developers.

 Multidimensional measurements and evaluations are particularly crucial to grasp the total quality of

software. For example in [Washizaki07], the GQM model and specified measurements successfully

cover most major quality characteristics to measure and evaluate embedded C programs

multidimensionally.

 A multidimensional evaluation may reveal trends and tendencies of software quality in detail. For

example, GSE and Yahoo Japan jointly built a dashboard (Fig. 4) to visualize multiple measurement

results based on the underlying GQM model to support decision-making [Nakai14]. Visualizing the

multidimensional measurement results allows users to easily grasp possible side effects and the

overall total quality.

Figure 4: Dashboard visualizing multiple measurement results (excerpt) [Nakai14]

 A multidimensional evaluation is also useful to capture the software development process and

project status. For example, the SEMAT (Software Engineering Methods and Theory) initiative

proposed a framework, the SEMAT Kernel, to reason about the progress of stakeholders and the

health of their endeavors in terms of six different but mutually dependent concerns: opportunity,

stakeholders, requirements, software system, work, team, and way of working [Jacobson12]. These

concerns are called ñalphasò. Alphas are essential elements of a software engineering endeavor, and

their progress and health must be assessed. Figure 5 shows the relationships among these alphas.

Through this framework, stakeholders can capture a projectôs status multidimensionally rather than

through work products (such as documents).

 In the SEMAT Japan Chapter, a working group of ITA (Information Technology Alliance, which is

an association of Japanese information technology companies) analyzed existing project failure

cases using the SEMAT Kernel. They then identified root causes and countermeasures of these cases

efficiently from wider viewpoints. Figure 6 shows an example of root cause analysis results by

analyzing a failure case through the relationships among alphas such as opportunity and

stakeholders.

Figure 5: Relationships among SEMAT alphas

Software
System

Opportunity Stakeholders

Requirements

Work Team

Way of
Working

Customer

Solution

Endeavor

Figure 6: Root cause analysis based on SEMAT alphas

3. Pitfall: Organization misalignment

 A measurement program must be fully aligned with organizational goals and strategies; otherwise,

even if GQM is adopted to clarify measurement goals and corresponding metrics, these goals and

metrics may be useless from the organizational managementôs point of view since their contributions

to the organization may be unclear without coherent rationales. To prevent such misalignments, at

least two countermeasures are possible: visualization of relationships among organizational goals,

strategies, and measurements and exhaustive identification of fact-based rationales.

3.1. Countermeasure: Visualization of relationships among organizational goals, strategies, and

measurements

By visualizing the relationships among organizational units, goals, strategies, and measurements,

whether (or not) the measurement program is consistent and fully aligned with the organization

becomes clear. GQM+Strategies, which was developed by Basili, et al., is an extension of GQM that

aligns and assesses the organizational and business goals at each organizational level to the overall

strategies and goals of the organization [Basili10][Basili14]. Figure 7 shows the structure of the

GQM+Strategies model (called ñgridò) [Aoki16]. GQM+Strategies has been used to establish

management strategies and plans, determine the value of a contribution, ensure the integrity of a goal

between a purchaser and a contractor, and evaluate management based on quantitative data.

There are many successful cases applying GQM+Strategies with extensions for measurement-based

IT business alignment, including:

 ̧ GSE introduced GQM+Strategies to Recruit Sumai Company Co., which provides services and

products related to housing [Aoki16]. In this case, GQM+Strategies maintains consistency

within a vertical refinement tree composed by goals, strategies, and measurements. In addition,

since horizontal relations such as conflicting ones at different branches (Fig. 8) may be missed

in the original GQM+Strategies approach, we proposed the Horizontal Relation Identification

Method (HoRIM) to identify horizontal relations by employing Interpretive Structural

Modeling (ISM) [Aoki16][Aoki17] . Applying GQM+Strategies along with HoRIM identifies

about 1.5 times more horizontal relations than an ad hoc review.

 ̧ GSE together with Yahoo Japan proposed a method, GO-MUC method (Goal-oriented

Measurement for Usability and Conflict) (Fig. 9), which is a goal-oriented strategy design

approach considering the requirements of both the user and the business by combining

GQM+Strategies and Persona approaches [Uchida16]. Applying GO-MUC to an actual

software service development and operation demonstrated that GO-MUC can identify the

interest between the business side and users side, realizing more effective and user-friendly

strategies to resolve conflicting interests.

Figure 7: Structure of a GQM+Strategies grid

Figure 8: Horizontal relations in GQM+Strategies grid

Figure 9: Overview of GO-MUC [Uchida16]

3.2. Countermeasure: Exhaustive identification of fact-based rationales

 GQM+Strategies extracts strategies from goals based on rationales such as fact-based contexts and

assumptions. A lack of rationales tends to be misleading and may result in deriving incorrect

strategies. Consequently, rationales must be identified exhaustively.

GSE proposed a method named CAM (Context-Assumption-Matrix) to extract contexts and

assumptions efficiently and exhaustively by analyzing the relationships between stakeholders. Figure

10 shows an example of CAM [Kobori]. CAM organizes common contexts and assumptions

between stakeholders into a two-dimensional table. CAM can be employed as part of the

GQM+Strategies grid construction process to refine business goals and strategies iteratively from

top to bottom (Fig. 11).

Figure 10: Context-Assumption-Matrix

Figure 11: Iterative process of GQM+Strategies grid refinement with CAM

4. Pitfall: Uncertain future

Quality measurements and evaluations are often conducted based on the strong assumption that the

ñfuture is an extension of the present.ò Especially in an era of uncertainty in computing and

