

Title: Pitfalls and Countermeasures in Software Quality Measurements and Evaluations

Author: Hiroshi Washisaki

Affiliation: Waseda University / National Institute of Informatics / SYSTEM INFORMATION

Contact: washizaki@waseda.jp, Waseda University, 3-4-1 Ohkubo, Shijuku-ku, 169-8555 Tokyo,

JAPAN

Abstract

This chapter discusses common pitfalls and their countermeasures in software quality measurements

and evaluations based on research and practical achievements. The pitfalls include negative

Hawthorne effects, organization misalignment, uncertain future, and self-certified quality.

Corresponding countermeasures include goal-oriented multidimensional measurements, alignment

visualization and exhaustive identification of rationales, prediction incorporating uncertainty and

machine-learning based measurement improvement, and standard/pattern-based evaluation.

Keywords

Software measurement, software metrics, software quality, goal-orientation, GQM, ISO/IEC 25000,

SEMAT, software patterns

1. Introduction

Measurements to evaluate quality are essential to specify, manage, and improve the quality of

product in software developments. However, a development project may become worse, such as a

misleading conclusion, if the measurement program is not properly adopted. This chapter discusses

common pitfalls and their countermeasures in software quality measurements and evaluations based

on research and practical achievements at the Global Software Engineering Laboratory (PI: Prof.

Hironori Washizaki) of Waseda University in collaboration with many software companies [GSE].

Table 1 summarizes the specific pitfalls addressed and their corresponding countermeasures.

Table 1. Pitfalls and countermeasures in quality measurements and evaluations

Pitfall Countermeasure

Negative Hawthorne effects
Goal-orientation

Multidimensional measurements

Organization misalignment

Visualization of relationships among organizational goals,

strategies, and measurements

Exhaustive identification of rationales

Uncertain future
Prediction incorporating uncertainty

Measurement program improvement by machine learning

Self-certified quality
Standard-based evaluation

Pattern-based evaluation

2. Pitfall: Negative Hawthorne effects

Measurements are so powerful that they drive people’s behavior. This phenomenon is known as the

Hawthorne effect (or the observer effect). It was derived from famous extensive productivity

research conducted at the Western Electric/AT&T Hawthorne plant between 1924 and 1932, which

confirmed that whatever management paid attention to and measured improved [Linda06].

 Thus, measurements should be carefully employed in software development and quality

management to help stakeholders focus on what is truly important. Otherwise, quality may improve

with regard to the measurements, while quality of aspects not measured may decline at the expense

of the overall quality. This is a common symptom when a measurement program is build based on

available data or what is of most interest to the metrics engineer [Linda06].

 There are at least two countermeasures to prevent negative Hawthorne effects: goal-orientation and

multidimensional measurements. The former contributes to clarifying the focus and corresponding

measurements, while the latter incorporates various aspects to ensure total quality.

2.1. Countermeasure: Goal-orientation

 Goal-orientation is a generic term for approaches involving goal setting and variable derivation in a

top-down manner. Goal-Question-Metrics (GQM, hereafter) is a goal-oriented approach to define a

measurement program from the top goal [Basili02]. GQM takes the following three steps to define a

measurement program [Linda06]:

(1) Identify the Goal for the product/process/resource from the viewpoint of the actual “customer” of

the measurement program.

(2) Determine the Questions that characterize how achievement of the goal is assessed.

(3) Define the Metrics that quantitatively answer each question.

 GQM is particularly useful to capture the nature of software quality since quality is an abstract and

inherently invisible concept. Applying GQM makes it much easier to focus on what is truly

important for the “customer” and build a measurement program based on the goal instead of

available data. Consequently, GQM may mitigate the possibility of negative Hawthorne effects and

turn them into positive ones.

 There are many successful cases of GQM adoption in software quality measurements, including:

 OGIS-RI Co. and GSE jointly built a static analysis and measurement tool called Adqua to

evaluate the quality of embedded program source codes written in C language. Measurements

in Adqua have been identified using GQM and the ISO9126-1 quality model [Washizaki07].

The GQM model consists of ten goals to evaluate quality sub-characteristics, 47 questions, 101

sub-questions, and 236 metrics. Figure 1 shows an excerpt of the model. For example, several

language-independent questions (e.g., Q3700) help to evaluate how easily the source code is

analyzed. Because Q3700 is quite abstract and difficult to measure directly, it is divided into

several sub-questions, including Q3701 and Q3702. Finally, metrics are assigned to each

sub-question, allowing useful data to assess the goal to be obtained. The single metric, MFn095,

is assigned to Q3701, and three metrics, MFn066, MFn072 and MFn069, are assigned to Q3702.

Thus, the source code quality can be evaluated via quality-sub-characteristic units from the

measurement. By conducting experiments targeting several embedded programs, it has been

confirmed that Adqua can be used effectively to evaluate programs for reliability,

maintainability, reusability, and portability. Adqua has been used to evaluate embedded

programs in Japan successfully for over five years.

 GSE, OGIS-RI Co. and Yamaha Corporation extended the above-mentioned tool to evaluate the

reusability of C language program source code more precisely by adopting GQM to identify a

set of metrics [Washizaki12]. By applying the tool to ten actual projects involving the

development of existing software modifications and adoptions, it has been confirmed that these

metrics effectively reflect and estimate the magnitude of necessary effort to reuse a target.

 GSE and FUJITSU CONNECTED TECHNOLOGIES investigated the impact of software

transfer from one development organization to another organization on software maintainability

and reliability by introducing the concept of “origins” as files’ creation and modification

histories [Sato13]. They adopted GQM to specify necessary measurements to determine

maintainability and reliability under the context of software transfer. Figure 2 shows the GQM

model constructed by setting goals to evaluate specific quality characteristics. Measurements

are from the static analysis tool Adqua. By analyzing two open source projects, OpenOffice and

VirtualBox, which were each developed by a total of three organizations, the results show that

files modified by multiple organizations or developed by later organizations tend to be faultier

due to the increase in complexity and modification frequency. The concept of origins as well as

the measurements specified have been utilized to investigate the impact of individual

developer’s experience on the software quality [Ando15][Tsunoda17] and to support the overall

comprehension of large programs with long histories involving transfers [Ishizue16]. Figure 3

shows an example of “Origin City”, which represents the measurement values for files with

different origins in the form of stacked 3D buildings [Ishizue16].

Figure 1: GQM model to evaluate the quality of C programs (excerpt) [Washizaki07]

Figure 2: GQM model to evaluate the reliability and maintainability of programs [Sato13]

Figure 3: Example of Origin City [Ishizue16]

2.2. Countermeasure: Multidimensional measurements

 Beside goal-oriented measurements, it is also important to measure and evaluate targets

multidimensionally to cover various aspects and ensure total quality since any feature may have side

effects or unintended quality characteristics. A typical example is the trade-off between

maintainability and performance (i.e., time behavior); a program tuned for computing performance

may be less comprehensible for human developers.

 Multidimensional measurements and evaluations are particularly crucial to grasp the total quality of

software. For example in [Washizaki07], the GQM model and specified measurements successfully

cover most major quality characteristics to measure and evaluate embedded C programs

multidimensionally.

 A multidimensional evaluation may reveal trends and tendencies of software quality in detail. For

example, GSE and Yahoo Japan jointly built a dashboard (Fig. 4) to visualize multiple measurement

results based on the underlying GQM model to support decision-making [Nakai14]. Visualizing the

multidimensional measurement results allows users to easily grasp possible side effects and the

overall total quality.

Figure 4: Dashboard visualizing multiple measurement results (excerpt) [Nakai14]

 A multidimensional evaluation is also useful to capture the software development process and

project status. For example, the SEMAT (Software Engineering Methods and Theory) initiative

proposed a framework, the SEMAT Kernel, to reason about the progress of stakeholders and the

health of their endeavors in terms of six different but mutually dependent concerns: opportunity,

stakeholders, requirements, software system, work, team, and way of working [Jacobson12]. These

concerns are called “alphas”. Alphas are essential elements of a software engineering endeavor, and

their progress and health must be assessed. Figure 5 shows the relationships among these alphas.

Through this framework, stakeholders can capture a project’s status multidimensionally rather than

through work products (such as documents).

 In the SEMAT Japan Chapter, a working group of ITA (Information Technology Alliance, which is

an association of Japanese information technology companies) analyzed existing project failure

cases using the SEMAT Kernel. They then identified root causes and countermeasures of these cases

efficiently from wider viewpoints. Figure 6 shows an example of root cause analysis results by

analyzing a failure case through the relationships among alphas such as opportunity and

stakeholders.

Figure 5: Relationships among SEMAT alphas

Software
System

Opportunity Stakeholders

Requirements

Work Team

Way of
Working

Customer

Solution

Endeavor

Figure 6: Root cause analysis based on SEMAT alphas

3. Pitfall: Organization misalignment

 A measurement program must be fully aligned with organizational goals and strategies; otherwise,

even if GQM is adopted to clarify measurement goals and corresponding metrics, these goals and

metrics may be useless from the organizational management’s point of view since their contributions

to the organization may be unclear without coherent rationales. To prevent such misalignments, at

least two countermeasures are possible: visualization of relationships among organizational goals,

strategies, and measurements and exhaustive identification of fact-based rationales.

3.1. Countermeasure: Visualization of relationships among organizational goals, strategies, and

measurements

By visualizing the relationships among organizational units, goals, strategies, and measurements,

whether (or not) the measurement program is consistent and fully aligned with the organization

becomes clear. GQM+Strategies, which was developed by Basili, et al., is an extension of GQM that

aligns and assesses the organizational and business goals at each organizational level to the overall

strategies and goals of the organization [Basili10][Basili14]. Figure 7 shows the structure of the

GQM+Strategies model (called “grid”) [Aoki16]. GQM+Strategies has been used to establish

management strategies and plans, determine the value of a contribution, ensure the integrity of a goal

between a purchaser and a contractor, and evaluate management based on quantitative data.

There are many successful cases applying GQM+Strategies with extensions for measurement-based

IT business alignment, including:

 GSE introduced GQM+Strategies to Recruit Sumai Company Co., which provides services and

products related to housing [Aoki16]. In this case, GQM+Strategies maintains consistency

within a vertical refinement tree composed by goals, strategies, and measurements. In addition,

since horizontal relations such as conflicting ones at different branches (Fig. 8) may be missed

in the original GQM+Strategies approach, we proposed the Horizontal Relation Identification

Method (HoRIM) to identify horizontal relations by employing Interpretive Structural

Modeling (ISM) [Aoki16][Aoki17]. Applying GQM+Strategies along with HoRIM identifies

about 1.5 times more horizontal relations than an ad hoc review.

 GSE together with Yahoo Japan proposed a method, GO-MUC method (Goal-oriented

Measurement for Usability and Conflict) (Fig. 9), which is a goal-oriented strategy design

approach considering the requirements of both the user and the business by combining

GQM+Strategies and Persona approaches [Uchida16]. Applying GO-MUC to an actual

software service development and operation demonstrated that GO-MUC can identify the

interest between the business side and users side, realizing more effective and user-friendly

strategies to resolve conflicting interests.

Figure 7: Structure of a GQM+Strategies grid

Figure 8: Horizontal relations in GQM+Strategies grid

Figure 9: Overview of GO-MUC [Uchida16]

3.2. Countermeasure: Exhaustive identification of fact-based rationales

 GQM+Strategies extracts strategies from goals based on rationales such as fact-based contexts and

assumptions. A lack of rationales tends to be misleading and may result in deriving incorrect

strategies. Consequently, rationales must be identified exhaustively.

GSE proposed a method named CAM (Context-Assumption-Matrix) to extract contexts and

assumptions efficiently and exhaustively by analyzing the relationships between stakeholders. Figure

10 shows an example of CAM [Kobori]. CAM organizes common contexts and assumptions

between stakeholders into a two-dimensional table. CAM can be employed as part of the

GQM+Strategies grid construction process to refine business goals and strategies iteratively from

top to bottom (Fig. 11).

Figure 10: Context-Assumption-Matrix

Figure 11: Iterative process of GQM+Strategies grid refinement with CAM

4. Pitfall: Uncertain future

Quality measurements and evaluations are often conducted based on the strong assumption that the

“future is an extension of the present.” Especially in an era of uncertainty in computing and

environments, there is no guarantee that a prediction or estimation of quality or related elements

based on past data at a certain time point will be correct in the future. At least two countermeasures

will prevent such incorrect predictions and estimations: quality prediction in consideration with

uncertainty and continuous improvement of quality measurement and continuous measurement

program improvement by machine learning.

4.1. Countermeasure: Prediction incorporating uncertainty

Among the various quality characteristics, software reliability is a critical component of computer

system availability. Software reliability growth models (SRGMs), such as the Times Between

Failures Model and Failure Count Model, can indicate whether a sufficient number of faults have

been removed to release the software [Honda17]. Although logistic and Gompertz curves are both

well-known software reliability growth curves, neither can account for the dynamics of software

development because developments are affected by various elements in the development

environment (e.g., skills of the development team and changing requirements).

To adapt to changes, GSE proposed a generalized software reliability model (GSRM) based on a

stochastic process to simulate developments, which include uncertainties and dynamics such as

unpredictable changes in the requirements and the number of team members [Honda17]. Figure 12

shows combinations of three different types of dynamics and three different types of uncertainty,

resulting in nine models. Figure 13 plots the ratio of the cumulative number of detected faults at time

t versus the total number of detected faults for the entire project using these nine models, where the

x-axis represents time in arbitrary units.

GSE assessed two actual datasets using our formulated equations, which are related to three types

of development uncertainties by employing simple approximations in GSRM. The results confirm

that developments can be evaluated quantitatively. Additionally, a comparison of GSRM with

existing software reliability models demonstrates that the approximation by GSRM is more precise

than those by existing models [Honda17].

Figure 12: Combinations of dynamics and uncertainty in the generalized software reliability model

[Honda17]

Figure 13: Example plots of the generalized software reliability model

4.2. Countermeasure: Continuous measurement program improvement by machine learning

 Employing automated measurement tools and thresholds allows quality evaluations to be conducted

automatically. For example, program static analysis tools can be used to measure attributes of

programs. The measurement results can indicate high-risk program modules against given thresholds.

However, the problem is how to establish appropriate measurements and thresholds from the

viewpoint of quality evaluation because these may vary over time.

 To solve this problem, GSE proposed a GQM-based process to search for optimal thresholds by

supervised machine learning using measurement values taken from modules sampled as training data

and improving measurement methods by experts’ analysis of the evaluation results based on the

thresholds [Tsuda16]. Figure 14 shows the entire process. Implementing the process iteratively can

continuously improve and adapt a measurement program to the given context. A case study at a

construction machinery company with the goal of detecting high-risk C++ files in embedded systems

confirms that the proposed process is useful to achieve a goal in an iterative manner [Tsuda16].

Figure 14: Iterative process to improve a measurement program by machine learning

5. Pitfall: Self-certified quality

 Although quality requirements and evaluation methods can be defined for each development and

operational context, these definitions should be “reasonable” from the viewpoint of targeted domains

and industries. Otherwise, self-declared or self-certified software quality management without

consideration of outside standards or industrial de-facts may cause the quality to decline. Such

management may result in having relatively poor quality requirements or incomprehensive

evaluations. At least two possible countermeasures exist: standard-based quality evaluation and

pattern-based quality evaluation.

5.1. Countermeasure: Standard-based quality evaluation

 Several works have strived to identify software quality, but the quality of software products is often

not comprehensively, specifically, or effectively defined because previous approaches focused on

specific quality aspects. Moreover, the evaluation results of quality metrics often depend on software

stakeholders, making it difficult to compare quality evaluation results across software products.

ISO/IEC has tried to define evaluation methods for the quality of software products and provide

common standards, called the SQuaRE (Systems and software Quality Requirements and

Evaluation) series [ISO25000][ISO25010], including ISO/IEC 25022:2016 [ISO25022] and

ISO/IEC 25023:2016 [ISO25023]. Because the SQuaRE series includes ambiguous metrics,

applying the series to products and comparing results can be challenging. Thus, GSE proposed a

SQuaRE-based software quality evaluation framework, which successfully concretized many

product metrics and quality in use metrics originally defined in the SQuaRE series [Nakai16].

 Figure 15 overviews the framework. The framework is composed of two parts: “Product Quality”

and “Quality in Use”. The former contains internal and external product quality characteristics and

metrics based on ISO/IEC 25023:2016, whereas the latter has quality characteristics and

quality-in-use metrics based on ISO/IEC 25022:2016. Since the product quality is expected to

influence the quality in use, the framework measures both qualities to clarify the relationship. In

relation to PSQ Certification System [PSQ], GSE selected and concretized 47 product metrics and

18 quality-in-use metrics. These metrics can be concretely applied to almost any software

package/service products. These metrics cover more than 50% of the metrics originally defined in

the SQuaRE series.

This framework requires manual specifications, test specifications, and bug information to measure

product quality (Fig. 15). Moreover, the framework requires information collected via a

questionnaire and a user test to measure quality-in-use metrics. Finally, the overall software quality

is assessed based on the results to clarify what quality characteristics are sufficient (or insufficient).

Through a case study targeting a commercial software product, GSE confirmed that the framework

is concretely applicable to the software package/service product. The framework together with the

measurement results of 21 Japanese software products is available as the Waseda Software Quality

Benchmark (WSQB) at [WSQB17].

Figure 15: Overview of SQuaRE-based comprehensive evaluation framework

5.2. Countermeasure: Pattern-based quality evaluation

 Some specific quality characteristics, especially security, are difficult to accommodate because not

all software engineers are specialists in these characteristics. Patterns are reusable packages that

encapsulate expert knowledge. Specifically, a pattern represents a frequently recurring structure,

behavior, activity, process, or “thing” during the software development process. Many security

patterns have been proposed [Yoshioka08] [Fernandez08].

For example, the Role-based Access Control (RBAC) pattern (Fig. 16), which is a representative

pattern for access control, describes how to assign precise access rights to roles in an environment

where access to computing resources must be controlled to preserve confidentiality and the

availability requirements.

Security design patterns are difficult to implement because they are currently abstract descriptions.

Additionally, validating security design patterns in the implementation phase is challenging because

an adequate test case is required. Hence, a security design pattern can be inappropriately applied,

which leads to serious vulnerability issues [Yoshizawa16].

To evaluate program implementations in terms of security, GSE proposed a method to support the

implementation of security design patterns using a test template (Fig. 17). The method creates a test

template from a security design pattern, which consists of an “aspect test template” to observe

internal processing and a “test case template”. By providing design information in the test template,

a test is created to evaluate the system in the early implementation stage using a tool and fixing the

code. The test can be executed repeatedly. Thus, it can validate whether a security design pattern is

appropriately applied in the implementation phase. The method has been used in a previous

design-level validation tool called TESEM [Kobashi14][Kobashi15].

Figure 16: Essential structure of the RABC pattern

Figure 17: Overview of the security pattern implementation validation

6. Conclusion

 Four pitfalls and eight corresponding countermeasures in software quality measurements and

evaluations are explained using actual case studies and adaptation results mostly taken at GSE with

industrial collaborations. These pitfalls and countermeasure could be utilized for efficient and

effective software quality measurements and evaluations.

Acknowledgments

Achievements of GSE introduced in this chapter were supported by JSPS KAKENHI Grant

Numbers 25330091 and 16H02804, “Research Initiative on Advanced Software Engineering in 2015”

supported by Software Reliability Enhancement Center (SEC), and IISF SSR Forum 2015 and 2016.

References

[GSE] Global Software Engineering Laboratory, Waseda University,

https://www.waseda.jp/inst/gcs/en/labo/globalsoftware/

[Linda06] Linda M. Laird and M. Carol Brennan, “Software Measurement and Estimation: A

Practical Approach,” Wiley-IEEE Computer Society, 2006.

[Basili02] Victor R. Basili, Gianluigi Caldiera, Dieter Rombach, and Rini van Solingen, “Goal

https://www.waseda.jp/inst/gcs/en/labo/globalsoftware/

Question Metric (GQM) approach,” Encyclopedia of Software Engineering, John Wiley & Sons,

Hoboken, New Jersey, 2002.

[Washizaki07] Hironori Washizaki, Rieko Namiki, Tomoyuki Fukuoka, Yoko Harada and Hiroyuki

Watanabe, “A Framework for Measuring and Evaluating ProgramSource Code Quality,” Proceedings

of the 8th International Conference on Product Focused Software Development and Process

Improvement (PROFES 2007), Springer LNCS, pp.284-299, 2007.

[Washizaki12] Hironori Washizaki, Toshikazu Koike, Rieko Namiki, Hiroyuki Tanabe, “Reusability

Metrics for Program Source Code Written in C Language and Their Evaluation,” Proceedings of the

13th International Conference on Product-Focused Software Development and Process Improvement

(Profes 2012), pp.89-103, June 13-15, 2012.

[Sato13] Seiji Sato, Hironori Washizaki, Yoshiaki Fukazawa, Sakae Inoue, Hiroyuki Ono, Yoshiiku

Hanai and Mikihiko Yamamoto, “Effects of Organizational Changes on Product Metrics and Defects,”

Proceedings of the 20th Asia-Pacific Software Engineering Conference (APSEC 2013). pp.132-139,

Bangkok, Thailan, 2-5 December 2013.

[Ando15] Reou Ando, Seiji Sato, Chihiro Uchida, Hironori Washizaki, Yoshiaki Fukazawa, Sakae

Inoue, Hiroyuki Ono, Yoshiiku Hanai, Masanobu Kanazawa, Kazutaka Sone, Katsushi Namba,

Mikihiko Yamamoto, “How Does Defect Removal Activity of Developer Vary with Development

Experience?,”Proceedings of the 27th International Conference on Software Engineering and

Knowledge Engineering (SEKE 2015), Wyndham Pittsburgh University Center, Pittsburgh, USA,

July 6-8 2015.

[Tsunoda17] Taketo Tsunoda, Hironori Washizaki, Fukazawa Yosiaki, Inoue Sakae, Yosiiku Hanai

and Masanobu Kanazawa, “Evaluating the Work of Experienced and Inexperienced Developers

Considering Work Difficulty in Software Development,” 18th IEEE/ACIS International Conference

on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing,

June 26-28, 2017, Kanazawa, Japan.

[Ishizue16] Ryosuke Ishizue, Hironori Washizaki, Yoshiaki Fukazawa, Sakae Inoue, Yoshiiku Hanai,

Masanobu Kanazawa and Katsushi Namba, “Metrics visualization technique based on the origins

and function layers for OSS-based development,” 4th IEEE Working Conference on Software

Visualization (VISSOFT 2016), NIER Track, Raleigh, North Carolina, USA, October 3-4, 2016.

[Nakai14] Hidenori Nakai, Kiyoshi Honda, Hironori Washizaki, Yoshiaki Fukazawa, Ken Asoh, Kaz

Takahashi, Kentarou Ogawa, Maki Mori, Takashi Hino, Yosuke Hayakawa, Yasuyuki Tanaka,

Shinichi Yamada, Daisuke Miyazaki, ″Initial Industrial Experience of GQM-based Product-Focused

Project Monitoring with Trend Patterns,” 21st Asia-Pacific Software Engineering Conference

(APSEC 2014), Jeju, Korea, December 1-4, 2014.

[Jacobson12] Ivar Jacobson, Pan-Wei Ng, Paul E. McMahon, Ian Spence, Svante Lidman, “The

Essence of Software Engineering: The SEMAT Kernel,” Communications of the ACM, vol.55, no.12,

pp.42-49, December 2012.

[ITA] Information Technology Alliance, http://ita.gr.jp/

[Washizaki17] Hironori Washizaki, “Analyzing and refining project failure cases from wider

viewpoints by using SEMAT Essence,” Essence Conference in Seoul, 2017.

[Basili10] Victor Basili, Mikael Lindvall, Myrna Regardie, Carolyn Seaman, Jens Heidrich, Jurgen

Munch, Dieter Rombach, Adam Trendowicz, "Linking Software Development and Business Strategy

Through Measurement", Computer, Vol. 43, No. 4, pp.57–65., 2010.

[Basili14] Victor Basili, Adam Trendowicz, Martin Kowalczyk, Jens Heidrich, Carolyn Seaman,

Jürgen Münch, Dieter Rombach, “Aligning Organizations through Measurement - The

GQM+Strategies Approach,” Springer-Verlag, 2014.

[Aoki16] Yohei Aoki, Takanobu Kobori, Hironori Washizaki, Yoshiaki Fukazawa, “Identifying

Misalignment of Goal and Strategies across Organizational Units by Interpretive Structural

Modeling,” Proceedings of the 49th Hawaii International Conference on System Sciences

(HICSS-49), January 5-8, 2016 Grand Hyatt, Kauai

[Aoki17] Yohei Aoki, Hironori Washizaki, Chimaki Shimura, Yuichiro Senzaki, Yoshiaoki Fukazawa,

“Experimental Evaluation of HoRIM to Improve Business Strategy Models,” 16th IEEE/ACIS

International Conference on Computer and Information Science (ICIS 2017), May 24-26, 2017,

Wuhan, China.

[Uchida16] Chihiro Uchida, Kiyoshi Honda, Hironori Washizaki, Yoshiaki Fukazawa, Kentaro

Ogawa, Tomoaki Yagi, Mikako Ishigaki, Masashi Nakagawa, “GO-MUC: A Strategy Design Method

Considering Requirements of User and Business by Goal-Oriented Measurement,” 9th International

Workshop on Cooperative and Human Aspects of Software Engineering (CHASE 2016), collocated

with ICSE 2016, Autin, Texas, USA, May 16, 2016.

[Honda17] Kiyoshi Honda, Hironori Washizaki and Yoshiaki Fukazawa, “Generalized Software

Reliability Model Considering Uncertainty and Dynamics: Model and Applications,” International

Journal of Software Engineering and Knowledge Engineering, pp.1-29, 2017.

[Tsuda16] Naohiko Tsuda, Masaki Takada, Hironori Washizaki, Yoshiaki Fukazawa, Shunsuke

Sugimura, Yuichiro Yasuda, Masanao Futakami, “Iterative Process to Improve GQM Models with

Metrics Thresholds to Detect High-risk Files,” IEEE TENCON 2016, Marina Bay Sands, Singapore,

22-25 November 2016.

[ISO25000] ISO/IEC. ISO/IEC 25000:2014 Systems and software engineering - Systems and

software Quality Requirements and Evaluation (SQuaRE) - Guide to SQuaRE. 2014.

[ISO25010] ISO/IEC. ISO/IEC 25010:2011 Systems and software engineering - Systems and

software Quality Requirements and Evaluation (SQuaRE) - System and software quality models.

2011.

[ISO25022] ISO/IEC. ISO/IEC 25022:2016 Systems and software engineering - Systems and

http://ita.gr.jp/

software Quality Requirements and Evaluation (SQuaRE) - Measurement of quality in use. 2015.

[ISO25023] ISO/IEC. ISO/IEC 25023:2016 Systems and software engineering - Systems and

software Quality Requirements and Evaluation (SQuaRE) - Measurement of system and software

product quality. 2015.

[Nakai16] Hidenori Nakai, Naohiko Tsuda, Kiyoshi Honda, Hironori Washizaki, Yoshiaki Fukazawa,

“A SQuaRE-based Software Quality Evaluation Framework and its Case Study,” IEEE TENCON

2016, Marina Bay Sands, Singapore, 22-25 November 2016.

[PSQ] CSAJ, “PSQ Certification System,” http://www.psq-japan.com/english/

[WSQB17] Global Software Engineering Laboratory, “Waseda Software Quality Benchmark,”

http://www.washi.cs.waseda.ac.jp/?page_id=3910

[Yoshioka08] Nobukazu Yoshioka, Hironori Washizaki, Katsuhisa Maruyama, “A Survey on

Security Patterns,” Progress in Informatics, Vol.5, pp.35-47, 2008.

[Fernandez08] Eduardo B. Fernandez, Hironori Washizaki, Nobukazu Yoshioka, “Abstract security

patterns,” Proceedings of the 15th Conference on Pattern Languages of Programs, 2008.

[Yoshizawa16] Masatoshi Yoshizawa, Hironori Washizaki, Yoshiaki Fukazawa, Takao Okubo,

Haruhiko Kaiya and Nobukazu Yoshioka, “Implementation Support of Security Design Patterns

Using Test Templates,” Information, Vol.7, No.2(34), pp.1-19, 2016.

[Kobashi14] Takanori Kobashi, Nobukazu Yoshioka, Haruhiko Kaiya, Hironori Washizaki, Takao

Okubo, Yoshiaki Fukazawa, “Validating Security Design Pattern Applications by Testing Design

Models,” International Journal of Secure Software Engineering, Vol. 5, Issue 4, pp.1-30, 2014.

[Kobashi15] Takanori Kobashi, Masatoshi Yoshizawa, Hironori Washizaki, Yoshiaki Fukazawa,

Nobukazu Yoshioka, Haruhiko Kaiya, Takano Okubo, “TESEM: A Tool for Verifying Security

Design Pattern Applications by Model Testing,” Proceedings of the 8th IEEE International

Conference on Software Testing, Verification, and Validation (ICST 2015), Tool Track, 13 – 17 April

2015, Graz, Austria.

http://www.psq-japan.com/english/
http://www.washi.cs.waseda.ac.jp/?page_id=3910

