Title: Pitfalls and Countermeasures iafvareQuality MeasuremestandEvaluatiors

Author: Hiroshi Washisaki

Affiliation: Waseda University / National Institute of InformaticSYSTEM INFORMATION

Contact: washizaki@waseda.jp, Waseda Universis130hkubo, Shijuktku, 1698555 Tokyo,
JAPAN

Abstract

This chapter discusses common pitfalls and their countermeasures in software quality measurements
and evaluations based on resbarand practical achievement$he pitfalls include negative
Hawthorne effects organization misalignment uncertain future and elf-certified quality
Correspondingcountermeasures includgaloriented multidimensional measurementalignment
visualizationand exhaustive identification of rationalegrediction incorporating uncertainignd

machinelearning based measuremanprovementandstandardpatternbased evaluation

Keywords
Softwaremeasuremensoftware metris, software qualitygoalorientation,GQM, ISO/IEC 25000,

SEMAT, software patterns

1. Introduction

Measurements to evaluate quality are essential to specify, manage, and imprquelitireof
product in software developments. Howewgedevelopment projéamay becomewvorse such asa
misleading conclusiqrif the measurement program is not properly adopiédts chaptediscusses
common pitfalls and their countermeasuresoftware quality measuremsrand evaluatiosbased
on research and pradicachievementst the Global Software EngineeringLaboratory (Pl Prof.
Hironori Washizaki) of Waseda University in collaboration with many software companies [GSE].

Table 1 summarizese specifigitfalls addressedndtheir corresponding countermeasures.

Tablel. Pitfalls and countermeasuriesquality measuremesiind evaluatios

Pitfall Countermeasure

Goalorientation

Negative Hawthorneffects — -
Multidimensional measurements

Visualization of relationships amongrganizational goals

Organizationmisalignment strategiesand measurements

Exhaustive identification of rationales

Prediction incorporating uncertainty

Uncertainfuture : : :
Measurement program improvement by machine learning

Standarebased evaluation

Self-certified quality

Patternbased evaluation

2. Pitfall: NegativeHawthorneeffects

Measurements are so powerful that they drive peo
Hawthorne effect (or the observer effect). It was derived ffamous extensive productivity
research conducted #ite Western Electric/AT&T Hawthorne plant between 1924 and 198&ch
confirmedthat whatever management paid attention to and measured improved [Linda06].

Thus, measurementshould be carefully employed in software development amahlity
management thelp stakeholders focus on what is truly important. Otherwise, quality improve
with regard to the measurements, while quality of aspects not measured may decline at the expense
of the overall quality. Thiss a common symptom whea measurement program is build based on
available data or what is of most interest to the metrics engineer [Linda06].

There are at least two countermeasungzrévent negative Hawthorne effects: goaéntation and
multidimensional measurements. The former contributedatdfying the focus and corresponding

measurementsvhile the latteincorporateyvarious aspects to ensure total quality.

2.1. CounterneasureGoalorientation

Goalorientation isa generic term foapproachesvolving goal setting andariablederivation ina
top-down mannerGoalQuestionMetrics (GQM, hereafter) is a geafiented approacto definea
measurement program fratime top goal[Basili02]. GQM takes the following three steps to defme
measurement prografhinda06}
(2) Identify the Goal for the product/process/resofmae the viewpoint othea c t u a | Acust omer ¢
the measurement program
(2) Determine the Questions that charactenize& achievement of the goal is assessed.
(3) Define the Metristhat quantitativiy answer each question.
GQM is particularlyuseful tocapturethe nature ofoftware quality sincguality is anabstractaind
inherently invisible conceptApplying GQM makes itmuch easier tdocus on what is truly

importantf o r t he and buldammeasura@ment program based thie goalinstead of

available data. Consequently, GQM nraitigate the possibility of negativdawthorneeffects and
turn them into positivenes
There are manguccessfutases 0GQM adoption in software quality measurensemcluding:

OGISRI Co. andGSE jointly built a static analysis and measuremémtl called Adqua to
evaluate theuality of embedded program soumeades written in C languageMeasurements
in Adquahawe been identified using GQMnd the 1SO9128 quality model[WashizakiO7]
The GQM model consists dengoalsto evaluatequality subcharacteristics47 questions101
subquestionsand 236 metricsrigure 1 showsn excerpt of the model-or example, several
languagendependent questions (€.@3700) help to evaluate how égsthe source code is
analyzel. BecauseQ3700is quite abstract and difficult to measutieectly, it is divided into
several subquestions, including Q3701 and Q3702. Finally, metrics are assignedcto
sub-question allowing usefuldatato assess the goal to be obtainBike singlemetric, MFn095,
is assigned to Q3701, and three metfi¢Bn066, MFN072 an#1FN069, are assigned to Q3702.
Thus the source code qualitgan be evaluatedia quality-subcharacteristic units from the
measurementBy conductng experiments targeting several embedded progrénhes been
confirmed that Adqua can be used effectivelyto evaluate programs for reliability,
maintainability, reusability and portability Adqua has been use evaluateembedded
programs in Japan successfttly over five years.
GSE OGISRI Co.and Yamah& orporationexterded the abovenentioned tool t@valuatehe
reusability of Clanguage program source caaere precisely byadopting GQM tddentify a
set of metrics[Washizakil2. By applying the tool toten actual projects invokng the
developmenbf existing softwarenodificatiors and adoptios it hasbeen confirmed that these
metricseffectively reflect and estimathe magnitude ofiecessary efiit to reusea target.
GSE and FUJITSU CONNECTED TECHNOLOGIESnhvestigatedthe impact ofsoftware
transfer from one development organization to another organizatisonftwaremaintainability
and reliabilityby i nt r oduci ng the <concept of dififaboni gi ns o ¢
histories Batol3. They adoptedGQM to specify necessary amurementsto determine
maintainability andeliability under the context of softwa transferFigure2 shows the GQM
model constructethy setting goaldo evaluag specific quality characteristicdéleasurements
are fromthe static analysis tool dqua.By analyzing two open source projects, OpenOffice and
VirtualBox, which were each developed by a total of three organizatlmmsgsultsshow that
files modified by multipleorganizations or developed by later organizations tend fauiger
due to thdncrease in complexity and modificatifrequency.The concept of origins as well as
the measurements specified have begitized to investigatethe impact of individual
devel oper 6s exper i erAndeljdsunodah7pndte supporitkoverallqu al i t y

comprehension of large programéh long histories involving transfef¢shizuel$. Figure 3

showsa n

exampl e

different origins in the form adtacled 3D buildings[Ishizue16]

o, fwhidl @presgniie measuitermedt valudsr files with

Characteristic| Sub-characteristic

Goal

Question

Sub-question

Metric

Reliability

Maturity

Purpose : Evaluate
[ssue : the frequency of
faults

Object: source code
[Viewpoint: end-user

}Q0100: Is the code not

20101 Has memory
been initialized

[IMF1134: Number of un-initialized
onst objects.

IMFI1107: Number of arrays with
fewer initialization values than
klements.

}20200: Is the scope not
koo large?

jhumber of partition
blements
hppropriate?

brone to faults? properly? [MF1133: Number of strings which
[lo not maintain null termination.
MF1169: Number of enumerations|
hot adequately initialized.
20201: s the MMdO027: Number of sub

klements

IMMd008: Number of functions
IMF1003: Effective number of
ines.

[20400: Is it possible to
estimate the size of
resources to be used?

[20401: Is there not
hny recursive call?

Msy021: Number of recursive
paths.

[Fault tolerance

[Maintainabilit
y

JAnalysability

[Purpose: Evaluate

Issue : the easiness of
identifying styles,
ktructure, behaviour and
parts for maintenance
Object: source code
[Viewpoint: developer

}Q3700 Are the functions
not too complicated?

03701 Is the
function-call nesting
hot deep?

IMFn(95 Depth of layers in call
leraph

23702 Is the logic
hot too complex?

IMFn066 Max. nesting depth in
fontrol structure.

MFEn(72 Cyclomatic number.
IMFn069 Estimated no. of static
aths.

Figure 1.GQM modelto evaluatehe quality of C prograns (excerpt) [WashizakiO7]

Goal

Question

Metric

Number of public methods
Number of public attributes
Number of static objects which are not mitialized explicitly

Is there no unnecessary accessibility to internal
elements?
Is the memory space initialized appropriately?

Evaluate Reliability
(Maturity)

Evaluate Maintainability

Is the code size appropriate?

Physical lines of code

Is the hierarchical structure appropriate?

Depth of inheritance tree

(Analyzability) Is the abstraction appropriate? Lack of cohesion in methods
Are elements concealed appropriately? Number Ot‘ £ 10bfﬂ vari_ables -
° Number of public static attributes
Evaluate Maintamnability | Are there no complex sentences? Number of lines with multiple statements
(Changeability)

Evaluate Maintainability

(Stability)

Are effects of external changes limited?

Rate of methods which call methods in other classes

Number of methods m other classes which this class calls

Number of functions using global variables defined in other files

Number of methods using public static attributes defined in other files

Number of functions and methods defined In other files which this file
calls

Number of global variables defined in other files which this file uses

Are effects of changes on the outside limited?

Number of global variables used in other files

Number of public static attributes used in other files

Number of functions and methods defined in other files which call
functions/methods defined in this file

Figure 2: GQM moddio evaluatahereliability and maintainability of programs [Sato13]

Users can control camera
position and angle Height means value of metrics

And
O3 is between O; and Os Color means functional layer

The center building
means O123

Site area means
number of files

023 1s between O:2 and O3

012 1s between O: and O:

Figure 3:Example ofOrigin City [Ishizuel6]

2.2.Countermeasurdultidimensional measurements

Beside goaloriented measurementit is also important to measure and evaluate targets
multidimensionallyto cover various spectsandensure total qualitginceany feature may havade
effects or unintended quality characteristicA typical example isthe tradeoff between
maintainabilityand performancei.e., time behavior)a programunedfor computing performance
may be less comprehensible fouman developers.

Multidimensional measurements and evaluations are particularly crugiasjathe total quality of
software. For example in [WashizakiO#je GQM model and specified measurements successfully
cover most major quality characteristics tneasure and evaluate embedded C programs
multidimensionally

A multidimensional evaluatiomay reveal trends and tendencidéssoftwarequality in detail. For
example GSEandYahooJapanointly built a dashboardH{g. 4) to visualizemultiple measurement
results lased on the underlying GQM model to supmtatisionmaking[Nakail4]. Visualizing the
multidimensional measurement resudtdows usersto easily grasp possible sidsfects andthe

overalltotal quality.

Metrics Trend

7]
!

'] = Closslssue == Opanissus

Figure 4. Dashboard visualizing multipteeasurement results (excerpt) [Nakail4]

A multidimensional evaluation is alagseful to capturéhe software development process and
project status. For exampléhe SEMAT (Software Engineering Methods and Theanjjiative
proposé a framework the SEMAT Kernel,to reason abouthe progres®f stakeholders and the
health of their endeavoiia terms ofsix differentbut mutually dependent concermpportunity,
stakeholdersrequirements, software system, work, team, and way of wofkawpbson12]These
concerns arseo.c aAll psheatish elemembfa softwareengineering endeavoand
their progress and health must hssessedrigure 5 showghe relationships among these alphas.
Throughthis framework,stakeholders can captuagrojecd status multidimensionally rather than
throughwork products (such as documents).

In the SEMAT Japan Chapter, a working group of ITA (Information Technology Alliawbéch is
an association of Japanese information technology compaariedyzedexisting project failure
cases using the SEMAT Kerndlhey theridentified root causes and countermeasures of teaeses
efficiently from wider viewpointsFigure 6 shows an examplef goot cause analysis resulby
analyzing a failure case througthe relationships among alphasuch as opportunity and
stakeholders.

Customer Opportunity]— Stakeholders

A

D

. . Software
Solution Requirements

System

Endeavor

Way of
Working

Figure 5: Relationships among SEMAT alphas

Problem
From

“Opportunity”& | pelay in service
“Stakeholders” deployment
viewpoints

Cause /\

Misunderstanding
Data input error of abnormal state
as normal state

Root
cause

Huge data inputs Defects in “Requirements”&

“Requirements”&) b Y
MELDPELLY operation manual Software system

“Software system”

Figure6: Root cause analysis based on SEMAT alphas

3. Pitfall: Organization misalignment

A measuremenprogram must be fully aligned with organizational goals and strategies; otherwise,
even if GQM is adopted to clarify measurement goals amesponding metricshese goals and
metricsmay ke useless fronthe organizational managemeérgoint of view since their contributions
to the organizatiomay beunclearwithout coherentrationales To prevent such misalignmentt
least twocountermeasureare possiblevisualization of relationshipamong organizational goals,

strategiesand masurementand exhaustive identification &dctbasedationales

3.1. CountermeasureXisualization of relationships among organizational goals, strategiebs

measurements

By visualizingthe relationships among organizationatits, goals, strategiesand measurements,
whether(or no) the measurement program dsnsistent andully aligned with the eganization
becomes cleatGQM+Strategieswhich wasdeveloped by Basili, et als an extension of GQNhat
aligns and assesses thiganizational and business goals at each organizational level to the overall

strategies andjoals of the organizatiofBasilil0][Basilil4] Figure7 showsthe structure othe

GQM+Strategies mo [Aakill6]. G@Ma+SBtiategies Hag beend used dstablish
management strategies and plans, determine the value of a contribution, ensure the integrity of a goal
between a purchaser and a contractor, and evaluate management based on quantitative data.
There are many successful cases applying GQM+Steaiggh extensiongor measuremerased
IT business alignmepincluding
GSEintroduced GQM+Strategies to Recruit Sumai Company Co., which provides services and
products related to housin@okil6]. In this case, GQM+Strategies mainticonsistency
within a vertical refinement tree composed by goals, strategiesmeasurementin addition,
since horizontal relationsuch as conflictingnesat different branche@=ig. 8) may bamissed
in the original GQM+Strategies approach, we pragbshe Horizontal Relatioldentification
Method (HoRIM) to identify horizontalrelations by employing Interpretive Structural
Modeling (ISM)[Aokil6][Aokil7]. Applying GQM+Strategiealongwith HORIM identifies
aboutl.5 times more horizontal relatiotig|an an ad hoeview.
GSE together with Yahoo Japaproposed a methodGO-MUC method (Goabriented
Measurement for Usability and Conflicfrig. 9), which is a goabriented strategy design
approach consideringhe requirements of both the user and thasibess by combining
GQM+Strategiesand Persona approael Uchidalg§. Applying GOMUC to an actual
software service development and operatitemonstratedhat GOMUC can identify the
interest between the business side and users reidiizing more effetive and usefriendly

strategies to resolve conflicting interest

GQM-+Strategies elements GQM graph

LS |

Figure7: Structure ofa GQM+Strategies grid

Unit 1.1 | |G1: Increased sales |

S1: increase sales of ||S2: acquire new customer
existing customer

Unit 2.1 Unit2.2
|G:... | |G:... |
S3: increase the S4: add a new S5: decrease the price || | S7: expand our web
price of service function to of service service
our web service
/k x N f Se6: develop databases
’ based on the customer
L characterization

Conflicting Additional Similar
contribution
Figure8: Horizontal relations in GQM+Strategies grid

Business side GQM+5 GQM+P User side
Business User
Goal Goal
——— —
Question Question
——] | —

Metric “ Metric

Analyzing the influences of metrics between both sides

Effecti Efficien|Satisfa| GQAM+S metrics
veness cy ction Msl MSZ - M53 |

Met [= | * | | * || Conflict
GQM+P Mp2 + + I
metrics

Mp3 - -

Planning a strategy
for solving a conflicting relation

Figure9: Overview of GGMUC [Uchidal6]
3.2. CountermeasurExhaustiveidentification offact-basedationales
GQM+Strategies extracts strategies from goals based on rationales suckbasddatontexts and

assumptionsA lack of rationales tends to be misleading and may result in deriving incorrect

strategiesConsequentlyrationales must be identified exhaustively

GSE proposd a method namedCAM (ContextAssumptionMatrix) to extract contexts and
assumptions efficiently and exhaustively analyzing the relationships between stakeholdégsire

10 shows anexample of CAM [Koboril. CAM organizes common contexts and assumptions
between stakeholders into a twdimensional table.CAM can be employedas part of the

GQM+Strategies grid construction procdesrefine business goals and strategies iteratifreim
top to bottom(Fig. 11).

Actor] Orderreception Shipment Inventory Control
. : =os TBD
Viewpoint Grp. Grp. Grp.
Order . C3:Inventory control group C4No Om? Integrates
; Cl: . X complaints from
reception] sometimes mistake the customers in
Grp. C2:-- number of the stocks. .
customer service
Shipment ChH:---
A2:---
Grp. Al:---
Inventory
Control Grp.
TBD

Figure 10 ContextAssumptionMatrix

Figure 1.: Iterative process of GQM+Strategies grid refinement with CAM

4. Pitfall: Uncertainfuture
Quality measurements and evaluations are often conducted bagesstnoangassumptiorthat the

if uture i s an ext &spacialy inancefa oftultertainty rinecermpnting and

