
Program Learning for Beginners: Survey and

Taxonomy of Programming Learning Tools

Authors Name/s per 1st Affiliation (Author)

line 1 (of Affiliation): dept. name of organization

line 2-name of organization, acronyms acceptable

line 3-City, Country

line 4-e-mail address if desired

Authors Name/s per 2nd Affiliation (Author)

line 1 (of Affiliation): dept. name of organization

line 2-name of organization, acronyms acceptable

line 3-City, Country

line 4-e-mail address if desired

Abstract— Programming is taught around the globe because

it has become a vital skill. Occasionally a game or visual

programming language tool designed for programming education

is used to teach programming. In general, these tools have

various attributes, which inhibit a great learning effect if the tool

and learning objectives are not aligned. However, which tool is

most appropriate for a given objective remains unknown. In this

research, we propose a taxonomy table to evaluate program

learning tools and demonstrate its usefulness by researching and

comparing 43 kinds of program learning tools in the taxonomy

table. This research should contribute to the selection of suitable

tools for program learning.

Keywords—Programing learning, Taxonomy, Programming

learning tool

I. INTRODUCTION

Program learning environments such as Alice [1] or Scratch
[2] are often used to teach programming to first time learners.
Because these tools vary with regard to visual languages,
game-software, compatibility with hardware, tangible-devices,
and unplugged devices, an appropriate tool must be selected for
users (learners and educators), attributes (ages and
programming experience), and learning objectives. Which
attribute or tool type is best for a specific purpose is poorly
understood. Consequently, creating a taxonomy would help
users select the appropriate tool. This survey addresses the
following research question:

• Research Question (RQ): Can a taxonomy group,
evaluate, and compare programming learning tools
effectively?

The contributions of this research are:

• A taxonomy table, which can compare and evaluate
tools based on a standard protocol, is created.

• The taxonomy table aids users in selecting tools with
appropriate attributes for the learning objective.

The rest of this paper is organized as follows. Section 2
describes the background of this research. Section 3 overviews
the research method, while section 4 proposes our taxonomy.
Section 5 shows the classification results. Section 6 discusses
the RQ and the threat against validity. Section 7 introduces a
relevant study, and section 8 provides the conclusion and future
work.

II. BACKGROUND

A. Programing learning environments

Generally, a programming environment is used to learn to
program, but the specific environment varies according to the
purpose (e.g., business or learning).

We focus on programming environments (especially, tools
for children) for beginners learning to program. For example,
there are visual programming environments such as Scratch [2]
and Alice [1] as well as are game software environments such
as CodeCombat [3] and Lightbot [4]. Hence, various
programming environments for learning exist. These
environments have been applied to teach programming to
beginners. Several studies have shown the learning effects by
programming learning [5][6]. However, one study showed a
difference in the learning effect due to the programming
method and expression [6]. Qualitatively capturing the
characteristics of each environment is an important factor to
expand the learning effect.

B. Environment survey

Caitlin Kelleher et al. [7] investigated dozens of
programming environments by classifying them into categories.
Then programming environments were evaluated using the
same taxonomy. Unlike Kelleher et al., which included
numerous programming environments, this study focuses on
programming learning environments for children to create a
taxonomy table optimized for helping users [educators and
learners (children)] select the environments referred to in [7].
Additionally, we evaluate the programming learning tools
intended for programming education with our taxonomy table.
The tools targeted in this thesis are visual languages, game
software, and other software that work alone on PCs (including
tablets and other devices) because the available tools have
drastically increased.

III. RESEARCH METHOD

 Many programming learning tools have been developed.
We characterize these tools and investigate the types of tools
that are currently available.

A. Method to Select Tools

To develop a method to survey program learning tools from
the literature, we referred to the study by Kai Petersen et al. [8]
because it is often used for comprehensive investigations of the
literature. First, we searched the Web using a Google Custom
Search API with eight sets (Japanese: 4 sets, English: 4 sets) of
keywords. Table 1 shows the keywords, where keywords in the
same row have same meaning in Japanese and English. The top
100 search results for each set of keywords were used,
providing a total of 800 results. Then we extracted the
programming learning tools by morphological analysis and
visual observations. We identified 54 tools. These tools were
further refined by only considering software working on a
device such as PC or tablet. Therefore, we surveyed 43 kinds

of tools. We divided the tools into three fields: visual
programming environments (Visual), game software (Game),
and other educational software (Other). Tools were classified
according to the text on each tool’s official website. Table 2
shows a list of survey tools.

TABLE I. KEYWORD LIST

Japanese English

プログラミング 学習 子ども ゲーム Programming learning tool game

プログラミング 学習 子ども ツール Programming learning tool children

プログラミング 教育 子ども ゲーム Programming education game

children

プログラミング 教育 子ども ツール Programming education tool children

TABLE II. TOOLS LIST

ID Name Field ID Name Field ID NAME Field

T1 Alice Visual T21 Code-Girl Collection Game T41 Squeak Other

T2 Ardublock Visual T22 CodeMonkey Game T42 Swift Playgrounds Other

T3 Blockly Visual T23 Crunchzilla Game T43 Tynker Other

T4 MOONBlock Visual T24 Daisy the Dinasaur Game

T5 Pyonkee Visual T25 Empire of Code Game

T6 Scrach Visual T26 Erase All Kittens Game

T7 Scratch Jr. Visual T27 Flappy Game

T8 SmalRuby Visual T28 HackforPlay Game

T9 Viscuit Visual T29 Junior Coder Game

T10 Greenfoot Visual T30 Lightbot Game

T11 Hopscotch Visual T31 Move the Turtle Game

T12 Kodu Visual T32 Penjee Game

T13 LearnToMod Visual T33 RoboMind Game

T14 Programin Visual T34 Run Marco! Game

T15 BetaTheRobot Game T35 Tech Rocket Game

T16 Bo1 Island Game T36 The Foos Game

T17 BotLogic.us Game T37 Tickle Game

T18 Code Monster Game T38 Turtle Academy Game

T19 Code Studio Game T39 JointApps Other

T20 CodeCombat Game T40 Learn Python Other

IV. TAXONOMY

A. Taxonomy classification

We created a taxonomy table to evaluate program learning
tools qualitatively (Table 3) by referencing Kelleher et al. [7].
Specifically, we optimized Kelleher’s table for learning tools
and added the following categories: Game Elements and
Requirements. We added game elements because playing a
game is a suitable method to learn programming, especially
programming concepts. In addition, the number of the games to
learn programming such as CodeCombat [3] and Lightbot [4]
has increased. In this survey, we considered game elements
that deal with games. We used Rule/Restriction, Goal, and
Reward (the common parts of the definition by Katie Seaborn
et al. [9] and Juho Hamari et al. [10] to define game elements.
From the viewpoint of multi-play, we also added Cooperation
[11]. The classification in the taxonomy table has 11 categories
for the 43 items. Classification details are explained below.

B. Taxonomy details

Style of Programming (C1) has six entries, which explain
the program style built into the tool. These include procedural,
functional, object-based, object-oriented, event-based, and state
machine-based.

Programming Construct (C2) reflects the programming
construct, which can be learned in a tool. Items include
conditionals, loops, variables, parameters, procedures/methods,
user-defined data types, pre-and-post conditions, and
recursions. In this survey, all types of loops are lumped
together because they are the same from the viewpoint of
teaching the concept of a loop. We added recursion as some
tools teach this concept.

Representation of Code (C3) explains how to display
programs. Items include text, pictures, flow charts, animations,
forms, finite state machines, and physical objects.

Construction of Programs (C4) describes how to input
programs. Items include typing code, assembling graphical
objects, demonstrating actions, selecting/form filling, and
assembling physical objects.

Support to Understand Programs (C5) focuses on help
understanding programs. Examples include back stories,
debugging, physical interpretations, liveliness, and generating
examples.

Designing Accessible Language (C6) explains the functions
to make programming languages easier to learn. Items include
limiting the domain, selecting user-centered keywords,

removing unnecessary punctuation, using natural language, and
removing redundancy.

Game Elements (C7) is a new category because we think
that the presence or absence of game elements affects the
learning effect. It represents the game element included in a
tool. Examples include rewards and goals, as explained in the
previous section.

Supporting Language (C8) is the language used in each tool.
This is newly added because whether users can understand the
description of the tools or not is relevant to the learning effect.
Supporting languages were classified as English, Japanese, and
others.

Operating Environment (C9) is the environment where each
tool works. We added category because how to start and use a
tool is important aspect of usability. We classified the
Operating Environment into Windows, Mac, Linux, Android,
iOS, Web, and other.

Interface (C10) explains the suitable device to use the tools.
We added this for the same reason as Operating Environment.
We classified into PC, Tablet, and Smartphone, and other.

Experience (C11) explains whether each tool targets a
novice programmer. This is added because our research aims to
survey program learning tools for children without
programming experience.

TABLE III. TAXONOMY

Style of programming

(C1)

Programming constructs (C2) Representation of code (C3) Construction of

programs (C4)

Support to understand

programs (C5)

Designing Accessible

Languages (C6)

procedural (i11) conditional (i21) text (i31) typing code (i41) back stories (i51) limit the domain (i61)

functional (i12) loop (i22) pictures (i32) assembling graphical

objects (i42)

debugging (i52) select user-centered

keywords (i62)

object-based (i13) variables (i23) flow chart (i33) demonstrating actions

(i43)

physical interpretation (i53) remove unnecessary

punctuation (i63)

object-oriented (i14) parameters (i24) animation (i34) selecting/form filling

(i44)

liveness (i54) use natural language

(i64)

event-based (i15) procedures/methods (i25) forms (i35) assembling physical

objects (i45)

genereated examples (i55) remove redundancy (i65)

state machine-based (i16) user-defined data types (i26) finite state machine (i36)

 pre and post conditions (i27) physical objects (i37)

recursion (i28)

Game elements (C7) Supporting Language (C8) Operating Environment (C9) Interface (C10) Experience (C11)

Rule/Restriction (i71) Japanese (i81) Windows (i91) PC (i101) unnecessary (i111)

Goal (i72) English (i82) Mac (i92) Tablet(8inch~) (i102) necessary (i112)

Rewards (i73) others (i83) Linux (i93) Smartphone (i103)

Cooperation (i74) iOS (i95) Web (i94)

 Android (i96) Other Interface (i104)

Other Environments (i97)

V. RESULT AND ANALYSIS

A. Overview of the results

We surveyed the features of the programming learning
tools. As a classification method, two people separately
evaluated each tool using the following process: (1) Read the
words on the official website of each tool. (2) Use each tool.
(3) Verify the classification in the taxonomy table. (4) Cross-
check the classification results of the evaluators.

Table 5 lists the taxonomy tables, which show the attributes
of the tools. Furthermore, Figure 1 shows the corresponding
number of tools for each attribute. Several tools have multiple
attributes. Additionally, some attributes may be applicable to
other fields (e.g., robot, unplugged tool). Therefore, additional
research is necessary.

For the Style of Programming, procedural, which is the
most basic concept, has the most entries as 25 tools are
applicable. Visual programming environments have been
applied to object-oriented in Style of Programming. Because
procedural and object-oriented are basic styles of programming,
many tools are being developed for these aspects.

For the Programming Constructs, five entries are supported
by more than half of the tools: conditionals, loops, variables,
parameters, and procedures/methods. These are important

concepts for programming. In particular, 28 tools have
incorporated conditions and loops as basic programming
concepts, indicating that many tools teach the logic of
programming.

For the Representation of Code, 90% of the tools use text.
Such tools refer to general languages, allowing users to learn
programming in a style that closely resembles regular
programming or to understand programs in a natural language.
Additionally, some tools such as Lightbot use pictures to
represent programs. These tools allow programming to be more
intuitively understood than text-based ones.

In Construction of Programs, assembling graphical objects,
which is a way to visualize language, has the most applicable
tools. Although some tools demand users to type code, many
tools enable users to input code by dragging and dropping. This
is because the tools are developed for children who may not be
proficient at typing or using a keyboard.

In Support to Understand Programs, physical interpretation
has the most entries, meaning the code is expressed by a
specific action such as “walk” or “jump” because these tools
are developed for children.

In Designing Accessible Language, limit the domain, which
is an attribute, has the most entries. Overall, 31 tools are

applicable. Limiting the domain makes it easier for learners to
understand programming.

In Game Elements, many tools include Rules/Restrictions
and Goals. At least one game element is observed in 24 of the
43 software tools. Therefore, most tools are categorized as
game software enabling users to learn programming by playing
a game using game elements. The advantage of game software
is that users can understand programs by watching an action
rather than reading written instructions.

In Supporting Language, English was the most supported
(36 tools). This is because many programming learning tools
are often developed in the European and the American blocs.
Some tools support many languages, enabling learners to learn
in their own languages. Hence, this will lead to a better
understanding of programming.

In Operating Environment, Web has the most entries.
Because tools, which work on the Web, do not require a long
time to prepare the environment, beginners can more quickly
begin to learn to program. Additionally, some applications
corresponding to tablets and smartphones are supported by
some tools. These tools make program learning easier.

In Interface, PC has the most entries (33 tools). This means
that most tools aim to teach users with a general language.

In Experience, over 90% (40 tools) of the tools can be used
by beginners, suggesting that most tools are intended for
beginners (especially for children).

B. Results of each field

1) Visual programming environments
There are 14 visual environments in the tools. Many visual

tools are object-oriented programming environments and
include basic programming concepts such as conditionals,
loops, and procedures/methods. Learning to program is easier
in a form close to real programming. As a representation of the
code, text is used. Additionally, as a method of programming,
many involve assembling graphical objects. Programming is
possible by dragging and dropping. Not all visual tools possess
game elements. In other words, these tools are not games, but
are specialized to create programs.

2) Game software
There are 24 game software tools. Many of the game

software are applied to procedural in the style of programming.
or have Rules/Restrictions and Goals in the game elements.
These game elements clarify learning goals. Therefore, game
software is very suitable for introductory learning. In addition,
we performed a cross tabulation with Game Elements, a newly
added category, and Programming Constructs, the basic goal of
programming learning. Table 4 shows the results. Many of the
tools, which have Rules/Restrictions and Goals, include
conditionals and loops. The reason for this is that showing the
action of a conditional in a game helps users comprehend such
concepts. Many games with these game elements, such as
CodeMonkey[13] and Lightbot[4], are similar to Turtle
Graphic. If users (educators and learners) want to learn
conditionals and loops, which are logics of programming, they
should select a game.

TABLE IV. RELEVANCE BETWEEN PROGRAMMING CONSTRUCTS AND

GAME ELEMENTS

Game

Elements

Condi

tional

Loop Variab

les

Parame

ters

Procedu

res/meth

ods

Pre and

post

conditions

Rec

ursi

on

Rule/Restr

iction

12 11 8 10 9 2 2

Goal 15 13 11 13 12 2 2

Reward 6 6 5 3 5 1 1

Cooperatio

n with

Others

2 2 3 3 3 1 0

3) Other educational software
five tools are neither game software nor a visual language.

There are many web services that gather programming learning
applications. In addition, there is a tool to easily develop
applications. Five programming expression tools are textual
representations. For other items, there are individual
characteristics for each tool. Furthermore, it is possible to break
down the field of each tool.

C. Summary of result

Our taxonomy is sufficient to evaluate and compare tools
because it contains attributes of each learning tool for
programming. In addition, tools can be characterized by field
(Visual, Game, and Other). Therefore, we can divide these
tools into fields using this taxonomy.

VI. DISCUSSION

A. Answer to the Research Question

We investigated the following research question:

• RQ: Can a taxonomy group, evaluate, and compare
programming learning tools effectively?

We derived a suitable taxonomy table based on Kelleher [1]
to compare and evaluate programming learning tools as
demonstrated by the fact that our taxonomy can classify all 43
tools. For example, many tools represent code by text and
demand that code is inputted by assembling graphical objects.
Tools with game elements are suitable to teach programming
concepts. Therefore, an evaluation using a unified taxonomy is
feasible. Moreover, tools can be selected by considering
learning objectives.

B. Threats to Validity

One threat to validity is that the evaluation results may
depend on the evaluator. Although two researchers
crosschecked the findings in this survey, results involving more
evaluators are necessary to confirm the conclusions.

In addition, the keywords used to extract the tools (Table 1)
do not cover all tools for beginners. In this search, we targeted
"children". However, an applicable tool may not be labeled as
“for children”. From the viewpoint of the retrieval method,
acquisition of high-quality data is a future subject.

Additionally, since we applied the results of a Google
search, it is possible that older tools are excluded. These tools
may have a more considerable influence than newer tools.
Hence, classifying older tools is important.

TABLE V. CLASSIFICATION RESULTS

i

1

1

i

1

2

i

1

3

i

1

4

i

1

5

i

1

6

i

2

1

i

2

2

i

2

3

i

2

4

i

2

5

i

2

6

i

2

7

i

2

8

i

3

1

i

3

2

i

3

3

i

3

4

i

3

5

i

3

6

i

3

7

i

4

1

i

4

2

i

4

3

i

4

4

i

4

5

i

5

1

i

5

2

i

5

3

i

5

4

i

5

5

i

6

1

i

6

2

i

6

3

i

6

4

i

6

5

i

7

1

i

7

2

i

7

3

i

7

4

i

8

1

i

8

2

i

8

3

i

9

1

i

9

2

i

9

3

i

9

4

i

9

5

i

9

6

i

9

7

i

1

0

1

i

1

0

2

i

1

0

3

i

1

0

4

i

1

1

1

i

1

1

2

T1 x x x x x x x x x x x x x x x x x x x

T2 x x x x x x x x x x x x x x x x x

T3 x x x x x x x x x x x x x x x

T4 x x x x x x x x x x x x x x

T5 x x x x x x x x x x x x x x x x

T6 x

T7 x x x x x x x x x x x x x x x

T8 x x x x x x x x x x x x x x x x x

T9 x x x x x x x x x x x x

T10 x x x x x x x x x x x

T11 x x x x x x x x x x x x x x x x

T12 x x x x x x x x x x x x x x x x x

T13 x x x x x x x x x x x x x x x

T14 x x x x x x x x x x x x x x x x

T15 x x x x x x x x x x x x x x

T16 x

T17 x x x x x x x x x x x x x x x x

T18 x x x x x x x x x x x x x x

T19 x

T20 x

T21 x x x x x x x x x x x x

T22 x

T23 x x x x x x x x x x x x x x x

T24 x x x x x x x x x x x x x x

T25 x x x x x x x x x x x x x x

T26 x x x x x x x x x x x

T27 x x x x x x x x x x x x x x x

T28 x x x x x x x x x x x x

T29 x x x x x x x x x x x x x x x x x x x

T30 x

T31 x

T32 x x x x x x x x x x x x x x x x x

T33 x

T34 x

T35 x x x x x x x x x x x x

T36 x

T37 x x x x x x x x x x x x x x x x x x x

T38 x x x x x x x x x x x x x

T39 x x x x x x x x x x x x

T40 x x x x x x x x x x x x

T41 x x x x x x x

T42 x x x x x x x x x x x x x x x x

T43 x

C5 C6C1 C2 C3 C4 C7 C8 C9 C10 C11

Fig. 1. Corresponding number of items by category.

VII. RELATED WORKS

Caitlin Kelleher and Randy Pausch surveyed programming
learning tools, classified them with their original taxonomy,
and created a table to explain tool attributes in 2005 [8]. Their
survey and taxonomy were highly detailed, greatly contributing
to resolving issues in this field. Due to advances in
programming learning tools, a new survey is necessary to
improve the taxonomy and incorporate new technology. In
addition, the preceding survey targeted all kinds of
programming education tools, which is extremely difficult
today due to the greater diversity in tool types. Thus, our
survey specialized in tools categorized as software developed
for the purpose of education. This study successfully provides a
taxonomy table for tools targeting beginners.

VIII. CONCLUSION

We surveyed 43 kinds of tools with an emphasis on visual
language and software that works alone (except visual
language) on PCs or other devices to create a taxonomy table
for programming learning tools. The proposed table can
evaluate and compare such tools. The experiment confirms that
the classification and evaluation results are independent of the
evaluator. Consequently, this taxonomy table helps users
(learners and educators) select the appropriate tool based on
their objective.

In the future, more than two people must verify the
taxonomy table to confirm its reliability. Additionally, we will
continue to investigate whether this taxonomy table helps users
select the appropriate tool in actual situations.

REFERENCES

[1] Resnick, Mitchel, et al. "Scratch: programming for all."

Communications of the ACM 52.11 (2009): 60-67.

[2] Cooper, Stephen, Wanda Dann, and Randy Pausch. "Alice: a 3-D tool

for introductory programming concepts." Journal of Computing Sciences
in Colleges. Vol. 15. No. 5. Consortium for Computing Sciences in

Colleges, 2000.

[3] CodeCombat Inc., CodeCombat - Learn how to code by playing a game,

at https://codecombat.com/, accessed on 6/20, 2016.

[4] Daniel Yaroslavski, Lightbot, at https://lightbot.com/, accessed on 6/20,

2016.

[5] Theodoropoulos, Anastasios, Angeliki Antoniou, and George Lepouras.

"How do different cognitive styles affect learning programming?
Insights from a game-based approach in Greek schools." ACM

Transactions on Computing Education (TOCE) 17.1 (2016): 3.

[6] Saito, Daisuke, Hironori Washizaki, and Yoshiaki Fukazawa. "Analysis
of the learning effects between text-based and visual-based beginner

programming environments." Engineering Education (ICEED), 2016

IEEE 8th International Conference on. IEEE, 2016.

[7] Caitlin Kelleher and Randy Pausch, “Lowering the Barriers to

Programming: A Taxonomy of Programming Environments and
Languages for Novice Programmers,” ACM Computing Surveys, Vol.

37, No. 2, June 2005, pp. 83–137.

[8] Kai Petersen, Robert Feldt, Shahid Mujtaba, Michael Mattsson,
"Systematic Mapping Studies in Software Engineering," Proceedings of

the 12th International Conference on Evaluation and Assessment in

Software Engineering (EASE'08), pp.68-77, 2008.

[9] Katie Seaborn and Deborah I. Fels, “Gamification in theory and action:

A survey,” Int. J. Human-Computer Studies 74, 2015, pp. 14-31.

[10] Juho Hamari and Veikko Eranti, “Framework for Designing and
Evaluating game Achievements,” Authors & Digital Games Research

Association DiGRA, 2011.

[11] Juul, Jesper. Half-real: Video games between real rules and fictional

worlds. MIT press, 2011.

[12] J21 Corporation, CodeMonkey, at http://codemonkey.jp/, accessed on

6/20, 2016.

