
Quantitative Learning Effect Evaluation of

Programming Learning Tools

Abstract— Children can learn programming using different

tools. Understanding how the characteristics and features of each

tool impact the learning effect will enhance learning. However,

the impact of specific tools on the learning effect is unclear. In

this study, we conducted a workshop to evaluate the

characteristics and features of six tools on the learning effect.

Our study reveals that the learning effect clearly differs between

the six tools.

Keywords—Programming Education, Programming Learning,

Programming Learning Tools

I. INTRODUCTION

Various learning tools exist for first-time learners of
programming [1] [2]. Each tool has unique characteristics and
features. To enhance the learning effort, a tool must be
appropriately selected based on the learning purpose. Several
studies have evaluated various tools, but the learning effects
due to the characteristics and features of a given tool have yet
to be sufficiently examined.

To solve the aforementioned issue, this research
investigates the following Research Questions (RQs):

• RQ1: Is there a difference in characteristics and features
between programming tools?

• RQ2: Does the programming tool influence the learning
effect?

• RQ3: Is there a relation between the characteristics and
features of a tool and the learning effect?

RQ1 determines whether each tool has unique
characteristics and features. The most appropriate tool for the
intended purpose can be selected based on the desired
characteristics and features. Therefore, RQ1 should enhance
the effectiveness of applying tools.

Because the tool should impact the learning effect, RQ2
evaluates the influence of each tool on the learning effect. RQ3
will elucidate the learning effects based on the characteristics
and features of each tool. Understanding the learning effect
from these perspectives will help select the appropriate tool
based on learning objectives and goals.

The rest of this paper is organized as follows. Section 2
describes the background. Section 3 describes the survey tools,
while section 4 overviews the experiments. Section 5 shows the
evaluation results of each tool. Section 6 addresses the RQs
and threats against validity. Section 7 introduces a relevant
study, while section 8 provides the conclusion and future work.

II. BACKGROUND

Programming learning for beginners has been conducted
using various learning tools. As examples, Scratch [3][4] is
used in a visual programming language, while CodeCombat [5]
and Minecraft Education Edition [6] exist in game software.
These tools have different characteristics, including program
expression and programming method. For example, a program
expression can be text, visual, etc. A previous study on
multimedia learning revealed that learner recognition and
learning effects differ from the viewpoint of text expression
and image expression [7].

In addition, these tools differ widely from the developers'
thoughts, purposes of use, and learning objectives. Although
many researchers have investigated programming learning
tools (e.g., evaluation with a single tool [8] and comparisons
between text and visual languages [9]), few studies have
compared programming learning tools in multiple fields.
Therefore, the kinds of learning effects due to the
characteristics and features of the programming learning
environment are unknown.

In this research, we evaluate tools with three different
programming methods [visual programming languages, game
software, and physical tools (tangible and unplugged)] in the
same framework using a workshop.

III. PROGRAMMING LEARNING TOOLS

We selected six tools that are commonly available in Japan.

A. Scratch (Sc)

Scratch (Fig. 1) is a visual language used to create stories,
games, and animations. This globally popular tool was
developed by MIT Media Laboratory. Some studies [8][10]
have used this tool.

Fig. 1. Scratch

B. Viscuit (Vi)

Viscuit (Fig, 2) is a Visual Programming Language and
Environment. This tool was developed by Digital Pocket in
Japan. It can control the written Illustration using special
programming called "glasses".

Fig. 2. Viscuit

C. CodeMonkey (CM)

CodeMonkey (Fig. 3) is game software used to program the
behavior of a monkey collecting bananas. This game uses a
programming language called coffee script.

Fig. 3. CodeMonkey

D. Lightbot (Li)

Lightbot (Fig. 4) is game software used to program the
behavior of a robot to achieve a goal. It teaches the concept of
recursion as a "Loop".

Fig. 4. Lightbot

E. OSMO Coding (OC)

Osmo Coding (Fig. 5) is a tangible device. It uses physical
blocks for programming to control characters via an iPad
application.

Fig. 5. Osmo Coding

F. Robot Turtles (RT)

Robot Turtles (Fig. 6) is a board game in an unplugged tool.
The purpose is to create a program to manipulate the turtle and
collect jewels.

Fig. 6. Robot Turtles

G. Classification

These six tools can be divided by characteristic into three
fields: visual programming environment (VP), game software
(GM), and physical tool (PT). In addition, we qualitatively
evaluate the tools based on the taxonomy of Kelleher et al [1].
The results are shown in Table 1.

The visual programming environment uses a visual
programming language in a programming method with a drag
and drop feature. This feature allows content to be freely
created. Viscuit and Scratch are visual programming
environments. Their main difference is the expression of code.
Scratch is expressed in text, whereas Viscuit is expressed in
images.

Game software is software with game elements of
Rules/Restrictions, Goals, and Rewards [11][12][13]. Lightbot
and CodeMonkey are game software. These tools differ in the
expression of code and programming method. Lightbot
expresses code in images and programming is by drag and drop.
In contrast, CodeMonkey uses text to express code and the
programming method is typing the code.

A physical tool refers to a tool that allows programming
using physical cards or blocks. OSMO Coding and Robot
Turtles are examples. These tools differ in the location of the
program execution results. In OSMO Coding, the result of
programming is reflected in the software. Therefore, the
program works in a virtual space. On the other hand, the
execution result of the Robot Turtle is reflected in a piece on a
board game. In other words, the program works in real space.

TABLE I. RESULTS OF THE QUALITATIVE EVALUATION

 VP GM PT

 Sc Vi CM Li OC RT

Style of programming Procedural x x x x

Object-based x

Object-oriented

Event-based x x

Programming constructs Conditional x x x

Loop x x x

Variables x x

Parameters x x x

Procedures/Methods x x x x

Pre and post conditions x

Recursion x

Representation of code Text x x

Pictures x x

Physical objects x x

Construction of programs Typing code x

Assembling graphical objects x x x

Selecting/form filling x

Physical objects x ×

Support to understand programs Back stories x x x

Debugging

Physical interpretation x x x x x

Liveness x x

Generated examples

Designing accessible languages Limit the domain x x x x x x

Select user-centered keywords

Remove unnecessary punctuation

Use natural language

Remove redundancy

Game elements Rule/Restriction x x x x

Goal x x x x

Rewards x x

IV. EXPERIMENTS

A. Experiments

We focused on the understanding of basic programming
concepts (sequential execution, repetition, conditional) and the
influence of applied skill (especially, abstraction and problem
solving) in a workshop to evaluate the six tools. In addition, we
researched the attitudes toward programming via a
questionnaire on the attitude towards programming and an
eight-point learning comprehension test (programming basics
and programming applied test).

B. Questionnaire and test

We conducted a questionnaire and a test to analyze the
learning effect.

1) Learning comprehension test
The test to investigate the influence of the tool on the

understanding of programming consisted of seven questions:

• Sequential: one question

• Repetition: three questions

• Conditional: two questions

• Free description problem: two questions

Figure 7 and 8 show the types of questions asked.

Fig. 7. Question example

I want to go from the start (〇) to the goal (☆).

If you have the following rules, what kind of route do
you follow?

Please draw a line in the maze. (Hint: Let's unravel
while rotating the paper)

1. If there is a wall on the right hand and there is no
wall in front, proceed

2. If there is no wall on the right hand, rotate to the
right

3. If there is a wall in front and the right hand, rotate
to the left

Fig. 8. Free description problem

2) Questionnaire about the attitude toward programming
This questionnaire was conducted before and after the

workshop to investigate the change in attitude toward
programming [fun (Q1A, Q1B), difficulty (Q2A, Q2B),
usefulness (Q3A, Q3B), willingness (Q4A, Q4B) and interest
(Q5A, Q5B)]. Responses were on a six-stage Likert Scale (1:
Strongly disagree, 2: Disagree, 3: Somewhat disagree, 4:
Somewhat agree, 5: Agree and 6: Strongly agree). Based on
[14], the questionnaire consisted of the following five
questions:

• Q1: Do you think programming is fun?

• Q2: Do you think programming is difficult?

• Q3: Do you think programming is usefulness?

• Q4: Do you want to learn programming?

• Q5: Are you interested in programming?

C. Workshop

1) Workshop
The workshop system was organized by two to four persons,

including lecturers and assistants. The learners were
elementary students in grades 3 to 6, except for learners using
Robot Turtles. These learners were in grades 1 to 3 in an
elementary school where the tool officially was announced as a
subject. The teaching materials included online tools, handouts,
etc.

2) Schedule of the workshop

The workshop lasted 90 minutes with the following format:

1. Pre-Questionnaire: 2 min;

2. Pre-Test: 5 min;

3. Workshop Time: 75 min;

4. Post-Test: 5 min;

5. Post-Questionnaire: 3 min (+5 additional minutes
allowed)

2) Number of students and effective questionnaire

responses

Fifty-nine students participated in the workshop [Scratch
(10 people), Viscuit (9), CodeMonkey (9), Lightbot (7),
OSOMO Coding (16), and Robot Turtles (8)]. The number of
valid responses of the test and the questionnaire was as
follows:

• Learning comprehension test: 45 people

• Questionnaire of attitude toward programming: 49
people

• Questionnaire on impressions: 49 people

V. RESULTS AND ANALYSIS

A. Learning comprehension test

1) Overall test results
First, we analyzed the three groups: visual programming

environment, game software, and physical tools. Figures 9 – 11
show the learning comprehension test results by group. Each
group shows an improved learning comprehension after the
workshop. The prior score of each result and the posterior score
were tested using the Wilcoxon signed-rank test (confidence
interval 95%; p <0.05 indicates a significant difference). Table
2 summarizes the results.

The visual group improves as a whole. The Wilcoxon
signed-rank test has a p-value of about 0.08. Although the
difference is not significant, the trend indicates that the
workshop is effective. However, a few learners have reduced
scores after the workshop. One reason for a lower score may be
that learners became tired of learning in the visual
programming language and stopped taking the test.

The game software group greatly improves in learning. The
Wilcoxon signed-rank test has a p-value of about 0.006, which
is statistically significant. Game elements are one reason for
the significant difference. Because the goal in a game is clear,
the students are engaged until the test was complete. However,
it is possible that the improved scores are because the problems
asked in the test were similar to the game software.

Similarly, the learning effect of the physical tool group
improves after the workshop. The Wilcoxon signed-rank test
result is not significant with a p-value of about 0.28. The scores
of some learners decline after the workshop. The reason is
attributed to the difference in the work volume due to physical
intervention.

Fig. 9. Results of Visual Programming

Q1 Please freely draw a line so that the robot passes

through all the squares. At first it is facing right.

Q2 Please explain with a simple program why you
drew such a line.

6

5

4

3

2

1

1 2 3 4 5 6

Fig. 10. Results of Game Software

Fig. 11. Results of Physical Software

TABLE II. RESULTS OF THE SIGNIFICANT DIFFERENCE TEST (LEARNING

COMPREHENSION TEST)

Category Statistics p-value

Visual Programming Tools 17.5 0.0834 *

Game Software 0 0.0059 **

Physical Tools 30 0.2752

a. ** Significant difference, * Significant trend

2) Programming applied test
Two patterns emerge in the responses to the free

description questions. The descriptive patterns are either U-
shaped (Fig. 12, left) or spiral (Fig. 12, right). Because both are
correct due to problem solving, it is possible that learners
improve their problem-solving abilities and explanatory skills.
The spiral-type can be simply described with a few procedures
and components. Therefore, the improvement may be due to an
enhanced abstraction ability. It is interesting that only the
Viscuit participants responded using a spiral. This suggests that
Viscuit may have features not found in the other tools.

None of the learners tackled the explanation of the program
prior to the workshop, and only a small number did after
workshop. Furthermore, the differences between each tool are
not significant. For example, learners felt that they "wanted to
proceed until hitting the wall".

Fig. 12. Results of the Free Description Problem

B. Attitude toward programming

Figures 13 – 15 show the results of the questionnaire results
on attitude by programming by group. Table 3 shows the
Wilcoxon signed-rank test.

If the tool includes game elements, interest in programming
improves in the after workshop. Game software is more fun
that physical tools with game elements. We also performed a
significant difference test using a Wilcoxon signed-rank test.
The p-value for interest in the game software group is about
0.06, indicating a significant trend. From a comprehensive
viewpoint, game elements make programming feel interesting.

Visual programming languages tend to reduce the difficulty
of programming. The degree of difficulty decreases because
learners can easily create software by visual programming as it
is consistent with the general image of programming. The
Wilcoxon signed-rank test shows that the visual programming
group has a p-value of approximately 0.09. Therefore, it is a
slightly significant trend. Both the game software and physical
tools groups felt that programming was more difficult after the
workshop. For the game software group, the p-value of the
significance test result is about 0.07.

The visual programming language group and the physical
tools group indicated that the workshop did not increase the
usefulness of programming. However, the game software
group felt the usefulness improved after the workshop. This
difference may be because game software is instantaneously
executed and a concrete result is given. However, the
Wilcoxon signed-rank test indicates an insignificant difference
by group.

Each group displayed a similar willingness to learn. The
Wilcoxon signed-rank test indicates no significant differences.
This workshop was adapted with a short introduction, which
has a negligible effect on learning willingness. Depending on
the tool, some learners reported an impaired learning
willingness after the workshop. The reasons need to be further
considered.

Each group showed a slight improvement in interest in
programming. Although only studying programming for a
short time, it seems that the interest improves. However, the
Wilcoxon signed-rank test does not confirm a significant
difference.

Fig. 13. Results of visual programming language

Fig. 14. Results of game software

Fig. 15. Results of the physical tool

TABLE III. RESULTS OF THE SIGNIFICANT DIFFERENCE TEST (ATTITUDE

TOWARD PROGRAMMING)

 Visual language Game Software Physical tool

 Statistics p-value Statistics p-value Statistics p-value

Q1 6.000 0.160 0.000 0.059 * 2.000 0.131

Q2 17.500 0.087* 0.000 0.066 26.000 0.522

Q3 11.000 0.608 1.000 0.285 30.500 0.813

Q4 5.500 0.279 7.500 1.000 4.500 0.854

Q5 6.000 0.317 0.000 0.109 2.500 0.157

b. * Significant trend

C. Comparison of the characteristics and features in

individual tools

Table 4 overviews the characteristics and features of each
tool. In addition, the results of the questionnaire on the
impressions about each tool are considered.

1) Scratch
Scratch tends to improve the correct answer rate in the

learning comprehension test. Many answers for the free
description of learners are U-shaped in the descriptive patterns.
Additionally, after the workshop, the "difficulty" for
programming is remarkably reduced.

This program method in this tool is to drag and drop a
block. Hence, an action is validated immediately after
execution. This method is considered to be largely related to
the reduction of "difficulty" as assembling graphical objects is
a big factor as an element. Furthermore, impressions of
"making things" and "making apps" are observed. Thus,
learners can quickly visualize movement using illustrations.
Furthermore, the high freedom of programming seems to
contribute to such impressions.

2) Viscuit
This tool tends to improve the correct answer rate of the

learning comprehension test. Both U-shaped and spiral
responses are provided in the test of the free description. It is
possible that the tool stimulates creativity. The spiral type can
be described simply with few procedures and components.
Hence, the ability to abstract problems improves after the
workshop.

"Moving a picture" and "glasses" are common learner’s
impressions, which may be because movements with
“eyeglasses” are intuitive.

3) CodeMonkey
This tool tends to improve the correct answer rate of the

learning comprehension test. Many answers in the free
description test are U-shaped. Many learners tried to explain
programs in the free description, indicating that the learner
thought about and then solved the problem independently. This
tool improves explanation skills.

One learner commented, "There were various programs and
I learned something very interesting". This tool contains many
problems as a collection of problems. The learner adopts a
mechanism to progress continuously without a large gap in the
difficulty level. This tool seems to lead to continuous
enthusiasm and fun. Furthermore, it is easy to express goals
and rules of the game elements.

4) Lightbot
This tool tends to improve the correct answer rate of the

learning comprehension test because it helps comprehend
different programming concepts. Many answers in the free
description test of learners are U-shaped descriptive patterns.
This tool is a simple puzzle game, which can be operated
intuitively using a tablet (including smart phone). The learner
sees the program that he or she creates as movements of a robot.
Hence, it promotes the understanding of programming concepts.

One learner commented that it is “easier to learn with the
feeling of a game”. It is thought that this "game sensation"
improves the motivation of learners and promotes the
understanding of programming.

5) OSMO Coding
This tool tends to improve the correct answer rate of the

learning comprehension test. Many answers in the free
description of learners are U-shaped. Although major features
are not found for specific matters, each subject is approached in
a balanced manner. Because this tool is a tangible device, it is
considered effective for learning continuously without
decreasing motivation. However, due to the relationship
between the physical block and the software element, the
workload may increase, causing learners to quit.

In addition, learners noted many impressions of the word
"move" such as "move the computer" or "move it as instructed",
which are attributed to assembling and programming the blocks.

6) Robot Turtles
The tool tends to improve the correct answer rate of the

learning comprehension test. Many answers in the test of the
free description of learners are U-shaped. The tool is an
unplugged tool, and learners can work in groups. Learning in a
group can increase the diversity of knowledge and promote
comprehension from the viewpoint of sharing programs created
by the students. Cooperation with others also invokes a game
element. Impressions suggest that learners think a
programming can be optimized, as noted in responses such as a
"faster way to go forward”.

TABLE IV. FEATURE TABLE OF THE TOOLS

 Programming constructs Attitude toward programming

 Sequential Loop Conditional 1 Conditional 2 Free Description

(line)

Free Description

(Description)

Fun Difficulty Usefulness Willingness

Sc x x x xx

Vi x xx x

CM x x x

Li x x xx xx

OC

RT x x

c. x = Characteristic and feature, xx = Strong Characteristic and feature

VI. DISCUSSION

A. Answer to the RQs

1) RQ1: Is there a difference in characteristics and

features between programming tools?
Each tool exhibits different characteristics and features (e.g.,

programming method and expression of programming
language), confirming RQ1. Table 1 shows the qualitative
characteristics and features of the programming tool.
Furthermore, as noted by Kelleher et al. [1], some tools have
common characteristics and features. For example, visual
programming tools employ a programming method using drag
and drop. Furthermore, a physical object can be touched by
hand with the programming language. In addition, this study
used game elements as new elements, and game software has
some common elements.

2) RQ2: Does the programming tool influence the

learning effect?
Each tool displays its own learning effect. Due to the small

sample size, RQ2 should be further investigated. In particular,
a difference in the learning effect is observed in the free
description problem. However, the influence of each tool on
the answer to the free description problem must be further
evaluated. This is obvious from the fact that there are two
answers (Fig. 12). Furthermore, the questionnaire revealed a
difference in "difficulty" for the programming attitude. This is
also evident from the results in Fig. 13 - 15. Other attitudes
show improvement trends. It has been acknowledged that

visual programming tools improve attitudes toward
programming [8].

3) RQ3: Is there a relation between the characteristics

and features of a tool and the learning effect?
Each tool has learning effects based on its unique

characteristics and features, confirming RQ3. The qualitative
characteristics and features of the programming tool are listed
in Table 1. RQ2 revealed that the learning effect of each tool is
different. In particular, factors that influence the learning effect
include representation of code and construction of programs.
Representation of images and texts affect the recognition in
multimedia research [7]. Additionally, the amount of work (e.g.,
typing the code) in the programming learning environment is
affected. It is possible that the difference in this work may
influence the learner’s attitude. Furthermore, game elements
also influence attitudes toward programming based on the
research of Juho Hamari and Veikko Eranti [12]. In addition,
Each tool also has characteristics and features by learning
effect (Table 4). For example, with Viscuit, spiral type answers
are found in the free description problem, suggesting that
Viscuit helps cultivate abstraction skills. Therefore, the
characteristics and features of each tool may be related to the
learning effect. By taking advantage of the unique features, the
learning effect may be enhanced according to the intended
purpose.

B. Threats to validity

We noted the following threats to validity:

• The population size is small and the number of
participants in each tool is biased.

• Some of the test problems are similar to those of the
tools.

To address these issues, we will improve the test problems,
increase the population size, and enhance the statistical
reliability of the data.

VII. RELATED WORKS

Kelleher et al. [1] qualitatively investigated and categorized
multiple programming environments. However, a quantitative
investigation is necessary to assess the characteristics and
learning effects. Our research focuses on a quantitative
evaluation to clarify the learning effect from characteristics and
features.

Paul Gross and Kris Powers [2] summarized evaluations of
the programming environment for beginners. Furthermore, they
created a rubric to ascertain the quality of their evaluation.
They assessed courses of several different environments. In
contrast, our research analyzed the tools themselves and
investigated the learning effect based on the characteristics and
features of the tool. Using both their and our contributions, a
more system evaluation may be realized.

VIII. CONCLUSION

We conducted a quantitative evaluation by a workshop on
six programming learning tools. The elements of the
classification influence the learning effect. All tools improve
the learning comprehension test. However, if the software
involves physical elements, the learner may become bored as
the workload increases. The three groups (visual programming
language, game software and physical tool) show a difference
in attitude toward programming. The visual programming
language tends to soften programming difficulty. Although
tools with game elements tend to make programming more fun,
they also increase perceived difficulty of programming.

In the future, we plan to increase the number of tools and
the number of learners. We also plan to design a workshop that
is independent of the learning tools and lecturers.

REFERENCES

[1] Caitlin Kelleher and Randy Pausch, “Lowering the Barriers to
Programming: A Taxonomy of Programming Environments and
Languages for Novice Programmers,” ACM Computing Surveys, Vol.
37, No. 2, June 2005, 83–137, DOI:
https://doi.org/10.1145/1089733.1089734

[2] Paul Gross and Kris Powers, “Evaluating assessments of novice
programming environments” Proceedings of the first international
workshop on Computing education research, ACM, 2005, 99-110,
Seattle, WA, USA, DOI: https://doi.org/10.1145/1089786.1089796

[3] MIT Media Lab, Scratch - Imagine, Program, Share, at
https://scratch.mit.edu/, accessed on 4/13, 2017.

[4] Maloney, John, et al. "The scratch programming language and
environment." ACM Transactions on Computing Education (TOCE)
10.4 (2010): 16, DOI: https://doi.org/10.1145/1868358.1868363

[5] CodeCombat Inc., CodeCombat - Learn how to code by playing a game,
at https://codecombat.com/, accessed on 4/13, 2017.

[6] Microsoft, Minecraft Education Edition, at
http://education.minecraft.net/minecraftedu/, accessed on 6/20, 2016.

[7] Mayer, Richard E. "Multimedia learning." Psychology of learning and
motivation 41 (2002): 85-139.

[8] Sáez-López, José-Manuel, Marcos Román-González, and Esteban
Vázquez-Cano. "Visual programming languages integrated across the
curriculum in elementary school: A two year case study using “Scratch”
in five schools." Computers & Education 97 (2016): 129-141.

[9] Daisuke Saito, Hironori Washizaki and Yoshiaki Fukazawa.
“Comparison of Text-Based and Visual-Based Programming Input
Methods for First-Time Learners”. JITE:Research , Volume 16 , 2017.
pp 209 – 226

[10] Resnick, Mitchel, et al. "Scratch: programming for all."
Communications of the ACM 52.11 (2009): 60-67.

[11] Katie Seaborn and Deborah I. Fels, “Gamification in theory and action:
A survey,” Int. J. Human-Computer Studies 74, 2015, pp. 14-31.

[12] Juho Hamari and Veikko Eranti, “Framework for Designing and
Evaluating game Achievements,” Authors & Digital Games Research
Association DiGRA, 2011.

[13] Juul, Jesper. Half-real: Video games between real rules and fictional
worlds. MIT press, 2011.

[14] Saito, Daisuke, Hironori Washizaki, and Yoshiaki Fukazawa. "Analysis
of the learning effects between text-based and visual-based beginner
programming environments." Engineering Education (ICEED), 2016
IEEE 8th International Conference on. IEEE, 2016.

