
Inappropriate Usage Examples in Web API
Documentations

Abstract—Application Programming Interfaces (APIs) are
common in software development to reuse other products. Al-
though the documentation allows API consumers to learn about
API usages, it can be unreliable. Here, we investigate the charac-
teristics of inappropriate usage examples in web API documenta-
tion by extracting and comparing OpenAPI Specifications from
usage example-response pairs. About 65.5% of the endpoints
have some form of inappropriate usage examples. Furthermore,
mismatches are classified into four categories: undocumented
keys pattern, dynamic keys pattern, unreturned keys pattern, and
type mismatched pattern. Our results suggest that the number of
keys in the response is correlated with the number of mismatches.
These findings should assist both API providers and consumers
who deal with unreliable documentation in web APIs.

Index Terms—Web API, REST, Documentation, Usage Exam-
ple, Usability, Learnability, Reliability

I. INTRODUCTION

Various studies have reported that more usable software
such as that with simple easy to understand documentation
or comments in the source code promote reuse instead of
developers writing original code [1] [2] [3]. One reuse method
is to apply Application Programming Interfaces (APIs) to
develop the application [4].

Web APIs, which are invoked via a network with the REST
protocol, have become popular in recent software develop-
ments [5]. Web APIs often have more complex interfaces than
conventional APIs such as libraries or frameworks. This is
because the HTTP, which is used to invoke web APIs, accepts
many kinds of arguments and data. Thus, it is more difficult
to understand how to use web APIs compared to other types
of APIs. If web APIs are used incorrectly, serious bugs and
defects may occur in the products [6]. Consequently, for API
consumers to improve the reliability of their products, docu-
mentation to improve API’s usability, especially learnability,
is invaluable.

Documentation with usage examples is the most influential
factor to web API’s learnability [7]. Thus, we focus on these
examples to understand the characteristics of inappropriate
usage examples. Insufficient usage examples may confuse
API consumers. Consequently, software implemented based
on such documentation may not work correctly. For example,
according to the issue #2366 of GitHub [8], the service returns
floats although its documentation says the type is int64.

Specifically, we examine three research questions:
RQ1. What is the ratio of the APIs with inappropriate
usage examples? Web API’s documentation with incorrect
usage examples exists. However, its prevalence is unclear. RQ1
will answer this question. This question aims to quantify the
current situation.

RQ2. What kinds of mismatches are observed between
the responses and the usage examples? Although RQ1 will
provide the ratio of unreliable usage examples, it does not
discriminate the mismatch patterns between the responses and
the usage examples. To use APIs more effectively, mismatches
should be categorized. RQ2 aims to classify mismatch types.
RQ3. Are metrics correlated with the number of observed
mismatches? To predict whether the documentation is reli-
able, the characteristics of inappropriate usage examples must
be elucidated. This research question should help to make
such a prediction possible. In our study, we treated APIs and
their documentation from the viewpoint of API consumers.
Therefore, all metrics used to answer this question can be
measured by API consumers.

The answers to these research questions should provide
insight to address unreliable documentation of web APIs. To
provide the answers, we compared OpenAPI Specifications
(OASs) [9] extracted from a usage example-response pair of
the APIs. OAS is a way to notate the specifications of the
REST APIs. Because it is a simple, standard, and language-
agnostic interface for APIs, both humans and computers can
understand APIs without accessing the source code, documen-
tation, or network traffic inspections [9]. API providers can
define various API specifications such as a title, version, base
url, request parameters, and responses. These specifications
are well-structured and written in the JSON or YAML format.

In this paper, we investigate the reliabilities of usage ex-
amples in the web API documentation. Section II introduces
related works. Then section III describes the metrics used
in the research. Section IV shows the methodology and the
results of this study. Finally, section V provides conclusions
and future works.

II. RELATED WORKS

Martin P. Robillard et al. examined obstacles for developers
when learning usages of APIs [10] [11]. Through question-
naires they asked developers about the challenges when learn-
ing the usages of APIs [10] and usefulness of different types
of API documentation [11]. The responses indicated that unre-
liable documentation led to issues. Unreliable documentation
was composed of insufficient or inadequate examples and the
lack of references for the specific usages. These results support
our motivation as knowledge about unreliable documentation
should aid in efficient learning of API usages.

The effectiveness of usage examples in the documentation is
supported by the research of S. M. Sohan et al. [7] Their study
focused on obstacles for API consumers when learning the

usages from documentation without the usage examples. They
demonstrated that participants understood documentation with
usage examples faster than that without usage examples. In
addition, usage examples provided higher satisfaction ratings.
Thus, appropriate usage examples help improve the learnabil-
ity of APIs.

Unfortunately, usage examples sometimes contain defects.
Lin Shi et al. [2] found that Java library developers added
examples to explain API usages, but later had to fix them
due to defects. In addition, usage examples for web APIs had
similar behaviors. Jun Li et al. [12] investigated the evolution
of web APIs. They found that API changes could be summa-
rized into 16 patterns. They also revealed six new challenges in
migrating web APIs and several unique characteristics in the
web API evolutions. For example, changes such as adding,
removing, and changing parameters in both the requests and
responses could affect the usage examples. Furthermore, the
response format sometimes changed from XML to JSON. Such
modifications may force usage examples to change boldly.

These studies have contributed to the knowledge of appro-
priate documentation for API’s learnability. However, knowl-
edge about common documentation failures of web APIs does
not exist.

III. METRICS

Here we describe the metrics used in this research. Each
one can be measured from API consumers’ point of view.

ResponseTime is the time the web service takes to respond
to data [13]. It is measured in milliseconds. The count begins
before sending a request to a service and stops when a response
is returned. Values are the average of five measurements.

ResponseLength is the length of the responses as the
number of characters. We expect it to reflect the complexity
of the service. In other words, more complex services should
return longer responses. This metric does not distinguish
between a large response with a lot of keys and that with
a single large element.

NumberOfKeysInResponse represents the number of the
keys in the response a service provides to the client. Unlike
ResponseLength, this metric distinguishes between a large
response with a lot of keys and that with a single large element.

In addition, we define MismatchDensity as the number
of mismatches per OAS’s rows. This metric explains the
degree of correctness/incorrectness of usage examples in the
documentation. This value is calculated based on two OASs.
Figure 1 shows an example of an OAS. This index is from a
well-structured, equivalent format with the original OASs.

MismatchDensity is defined as the following normalized
edit distance of two dictionaries, dictionary A and B, which
are equivalent in the original OASs. Since it is normalized by
the number of OAS’s rows, they are comparable to each other.

MismatchDensity(A,B) =
D

max(len(A), len(B))
(1)

In this definition, D represents the edit distance of two input
dictionaries, while len(X) represents the function that returns
the number of lines of the OAS X. A value of 0.0 means that

� �
openapi: 3.0.0
servers:
- url: http://petstore.swagger.io/v2
paths:
/pet/{petId}:
get:
parameters:
- name: petId
in: path
...

responses:
200:
description: ’’
content:
...

example: 0� �
Fig. 1. Example of an OAS

���������	

�����������

����

�������������

����������

�����������������

��������������

�������� ������

	�!������������

������������

���

���

���

Fig. 2. Outline of our study

there is no mismatch between the two OASs. As shown in
section IV, inputs are extracted from both the responses and
the usage examples in the documentation. Examples (e.g., the
last line in Fig. 1) are removed before calculating.

IV. EMPIRICAL STUDY
A. Methodology

Our research is composed of five steps: extracting OASs,
calculate MismatchDensity, classify mismatches, investigate
correlations, and building a prediction model (Fig. 2).

For each endpoint of the APIs, a pair of OASs is extracted
to calculate MismatchDensity. To extract OASs, we referenced
Hamza Ed-douibi et al. [14] Each pair includes the OAS from
the usage example and that from the response. The OAS
extractor produces a request-response pair as the input and
output OAS. All the information used to extract the OAS is
from the documentation and the responses. Thus, APIs are
treated as black boxes.

After extracting the OAS pairs, MismatchDensity is calcu-
lated. As described in the section III, it explains the degree
of correctness/incorrectness of the usage examples in the
documentation. The results of this step answer RQ1.

While calculating the MismatchDensity, lists of mismatches
for each pair are generated. In the classification step, these lists
are categorized into patterns. The answer for RQ2 is derived
for each cluster.

The final step investigates the correlations and provides an
answer for RQ3. To discuss the correlations, we compute the
correlation coefficient matrix.

B. Dataset

To investigate the reliabilities of the web API documen-
tation, numerous usage example-response pairs are required.

TABLE I
LIST OF APIS IN THE DATASET

Domain Name (# of Endpoints)
Animals Dogs(8), Shibe.Online(1)
Anime Studio Ghibli(10)
Books BookNomads(1), Open Library(5)

Business Domainsdb.info(1)
Calendar Church Calendar(6), Hebrew Calendar(3)

Cryptocurrency CoinDesk(3),CoinMarketCap(4),CryptoCompare(14),Nexchange(8)
Data Validation PurgoMalum(1)

Development APIs.guru(2),Bored(1),DigitalOcean Status(8),Genderize.io(310),GitHub(40)

These pairs should be collected from various web services.
In our study, we collected 119 endpoints from 18 APIs. We
considered the following conditions:

• There is at least one usage example in the API documen-
tation.

• The API call is successful.
• The name of the API is listed in a repository called

“toddmotto/public-apis” on GitHub [15].
• The response is in the JSON format.
• Documentation is written in either English or Japanese.
• The API is free to use.
• The API does not require an api key or authorization.
To extract the OAS, a request-response pair is needed. The

first two conditions are based on this requirement. Usage ex-
amples are used to extract the OASs from the documentation,
and the results of API calls are used to extract from their
implementations. Because the OAS extractor only accepts the
JSON format as a response, APIs with XML responses are
excluded.

The last two conditions are for practical reasons. Due
to the number of required APIs, paying API royalties is a
hurdle. Furthermore, signing up for different service is another
obstacle.

From the top to the bottom of the list on the repository
named “toddmotto/public-apis” on GitHub [15], we selected
APIs meeting the aforementioned conditions. Although there
are a lot of APIs on the list, we picked up 18 APIs due to
the various documentation formats and difficulties automating
usage example extraction. As discussed later, this limitation
may be a threat to validity. Table I lists the APIs1. By executing
the OAS extractor, a pair of OASs is generated for each
endpoint.

C. Results and Discussion

1) RQ1: Figure 3 plots the distribution of MismatchDensity
in a histogram. Up to 41 of the 119 endpoints have a value
of 0.0. In other words, about 65.5% of the endpoints have
some mismatch between their two OASs. This is the answer
for the RQ1. The results indicate that documentation should
be checked more carefully.

Because each OAS is extracted from a request-response pair,
more than half of the endpoints have differences between the
usage example and the response. If a practitioner employs
these APIs by reading the documentation and implementing
the code, the product may contain defects.

1Details of the APIs are available at https://gofile.io/?c=yh22rE

0.0 0.2 0.4
MismatchDensity

0

10

20

30

40

of

 E
nd

po
in

ts

Fig. 3. Histogram of MismatchDensity

API Usage
Example

name: url
type: String
format: String

name: url
type: String
format: String

API

name: 2018-12-04
type: String
format: String

name: 2018-12-05
type: String
format: String

API

name: url
type: String
format: String

name: url
type: String
format: String

API

name: price
type: Number
format: Float

name: price
type: Integer
format: Int32

(a)

(c)

(b)

(d)

Usage
Example

Usage
Example

Usage
Example

Not Exist

Not Exist

Fig. 4. Types of mismatches: (a) Undocumented Keys Pattern, (b) Dynamic
Keys Pattern, (c) Unreturned Keys Pattern, and (d) Type Mismatched Pattern

2) RQ2: We checked all the differences between the two
OASs. Four types of differences are observed (Fig. 4). Figure
5 show example responses of these four patterns, where “+
means that the corresponding row only appears the responses,
and “- means the opposite. This is the answer for RQ2.

Undocumented Keys Pattern: This kind of difference
occurs when the response contains a key that is not in the
usage example. For instance, the response of the endpoint
named “Return all films of the Studio Ghibli API (v1.0.1)
contains a key called “url. However, this key is not in the
usage example in the documentation (Fig. 5(a)).

"release_date": "1986",

"rt_score": "95",

+ "url": "https://ghibliapi.herokuapp.com/films/..."

},

���

{

"bpi": {

+ "2018-07-19":7470.825,

- "2013-09-01":128.2597,

���

"domains":[

{

- "name": "google.com, facebook--de.com",

"hasWhois": 0,

���

"rank": 1,

+ "circulating_supply": 17217812,

- "circulating_supply": 17008162.0,

���

Fig. 5. Examples of Mismatch Patterns

Dynamic Keys Pattern: This kind of difference occurs
when the response contains a key that dynamically changes
its name. For example, the response of the endpoint named
“Historical BPI data” of the CoinDesk Bitcoin Price Index API
contains a key of dates (Fig. 5(b)). Thus, its name dynamically
changes based on the date it is called. This type of the
mismatch is not critical. However, the existence of such keys
should be acknowledged.

Unreturned Keys Pattern: This kind of difference occurs
when the response does not contain a key that is in the
usage example. Responses of the endpoint “search” of the
domainsdb.info API matches this pattern. The key “name” is in
the usage example but not in the responses (Fig. 5(c)). This is
the opposite pattern of Undocumented Keys. This is an issue.
Developers may think that the response contains such keys
and use it in their product, leading to serious defects.

Type Mismatched Pattern: This kind of difference occurs
when the type of value in the response differs from that in
the usage example. A typical example is the endpoint called
“Ticker (Specific Currency)” of the CoinMarketCap Public
API version 2. In the documentation, the value identified by
the key “circulating supply” is a float, although the value in
the response is an integer (Fig. 5(d)). Many of the differences
classified into this type will not cause serious defects because
recent programming languages automatically cast the value
into the best type. However, it might cause defects if it is the
difference between specific pairs such as an array-immediate
pair.

According to Jun Li et al. [12], there are various change
patterns in the web API documentations. Some are considered
to be the cause of mismatches. For example, mismatches
classified into the undocumented keys pattern may occur when
some parameters are added into the response but its usage
example is not updated. Furthermore, mismatches classified
into the unreturned keys pattern may occur when parameters
are removed from the response but its usage example is
not updated. The type mismatched pattern may occur when
changing the parameter types.

In our study, we set a condition in the dataset as “The
API call is successful.” Actually, the calls failed for some
endpoints. Similar to the observed patterns of the mismatches,
this phenomenon may occur when the method but not its
documentation is deleted.

Figure 6 shows the distributions of each type of mismatch.
Undocumented keys pattern and unreturned keys pattern are
the two most frequent. To deal with these mismatches, API
consumers should ensure that their products have redundan-
cies. For example, the effect of mismatches belonging to the
undocumented keys pattern occurring by deprecation of the
endpoint can be mitigated by implementing null-checks be-
cause such mismatches are due to the deletion of the keys from
the usage examples before they are deleted from the responses.
If API consumers implement null-checks into their products,
they will become aware of key deletions. Furthermore, this
measure will also mitigate the effects by an unreturned keys
pattern. Taking measures against the mismatches belonging to

0 20 40
of Undocumented Keys

0
25
50
75

100

of

 E
nd

po
in

ts

0 20 40
of Dynamic Keys

0
25
50
75

100

of

 E
nd

po
in

ts

0 20 40
of Unreturned Keys

0
25
50
75

100

of

 E
nd

po
in

ts

0 20 40
of Type Mismathced

0
25
50
75

100

of

 E
nd

po
in

ts

Fig. 6. Histogram of the number of mismatches by category

the type mismatched pattern, API consumers should always
be casting types, even if it is redundant.

3) RQ3: Table II shows the matrix of the correlation
coefficients. A value with “*” denotes a correlation coefficient
with the significance level of 5%, while a value with “**” is
that with a significance level of 1%. MismatchDensity (IX
in Table II) is not correlated with the other metrics (VI-
VIII). The answer to RQ3 is “No. On the other hand, the
number of mismatches (V) is strongly correlated with the
NumberOfKeysInResponse (VIII). NumberOfKeysInResponse
is correlated with the number of OAS’s rows because it
depends on the amount of API definitions such as keys. Hence,
the number of mismatches is correlated with the number of
OAS’s rows.

In the definition of MismatchDensity (Equation 1), the
number of mismatches is normalized by the number of OAS’s
rows. However, NumberOfKeysInResponse should be valuable
if the reliability of documentation is evaluated as the number
of mismatches.

Documentation with a high reliability but not a Mismatch-
Density value of 0.0 is problematic. Thus, we separated the
endpoints into two groups: those with MismatchDensity of 0.0
and all others. Then we analyzed the relationships.

Three extra figures represent the distributions of the metrics
explained in section III for the two groups. According to the
result of the Shapiro-Wilk test, these metrics do not follow a
normal distribution. Therefore, the p-values of the significant
differences are based on the Wilcoxon rank sum test where the
null hypothesis is, “There is no significant differences between
the two groups.”

Figure 7a shows the boxplot for ResponseTime. There is no
significant difference between the two groups for this metric
(The p-value is 0.513). Hence, ResponseTime does not reflect
the reliabilities of the documentation.

Figure 7b shows ResponseLength, and Fig. 7c is that for
NumberOfKeysInResponse. Both distributions have significant
differences (The p-value is 1.71e-5 in Fig. 7b and 2.12e-
10 in Fig. 7b) Furthermore, a threshold clearly appears for

(a) (b)

(c)
Fig. 7. Boxplots: (a) Distribution of ResponseTime, (b) Distribution of
ResponseLength, and (c) Distribution of NumberOfKeysInResponse

NumberOfKeysInResponse, and its value is probably around
10. On the other hand, ResponseLength lacks a clear threshold.
Thus, NumberOfKeysInResponse is more suitable than Re-
sponseLength to predict whether the documentation is reliable.

Our findings will help API consumers improve their prod-
uct’s reliabilities. They can be summarized as follows. Finding
1) Over half of the endpoints somehow have unreliable usage
examples. Finding 2) Mismatches can be classified into four
types: undocumented keys pattern, dynamic keys pattern,
unreturned keys pattern, and type mismatched pattern. Finding
3) NumberOfKeysInResponse may have a threshold around ten
for the existence of mismatch.

These findings should be useful for API consumers. For
instance, findings 1 and 3 demonstrate that API consumers
should focus when reading documentation. If there are more
than 10 keys, API consumers should read more carefully. Find-
ing 2 should provide solutions to develop countermeasures to
mitigate the effects of mismatches. Furthermore, API providers
benefit from these findings. For example, finding 3 should help
maintain sufficient and reliable documentation. API providers
should polish their API documentation from larger OASs.
D. Threats to Validity

Although GitHub API v3 was used in our research, most
APIs in our dataset are minor ones in industry. In most cases,
industry uses famous web services with plenty of functionali-
ties such as AWS and Google Cloud Platform. However, huge
services require a usage fee to access, which limits our access.
Our results may not be practical for industry.

A numerous APIs exist in the world, yet we collected
endpoints only from 18 APIs. However, API documentation
has a variety of formats. Hence, it is difficult to automate data
collection, which is the biggest challenge in this research.

V. CONCLUSION AND FUTURE WORKS

We investigated the characteristics of inappropriate usage
examples in the web API documentation by extracting the
mismatches between the usage examples and the responses in
an effort to verify the usability, especially the learnability of

TABLE II
CORRELATION COEFFICIENTS MATRIX

b c d e f g h i
a 0.39** -0.01 0.06 0.97** -0.03 0.51** 0.82** 0.20*
b - -0.10 0.30** 0.41** -0.16 0.58** 0.61** 0.12
c - - -0.07 0.19* 0.01 -0.02 -0.03 0.13
d - - - 0.16 -0.10 0.06 0.05 0.43**
e - - - - -0.04 0.51** 0.80** 0.27**
f - - - - - -0.09 -0.18* 0.11
g - - - 0.83** -0.02
h -0.04

a) Undocumented Keys, b) Dynamic Keys, c) Unreturned Keys, d) Type
Mismatched, e) All Mismatches, f) ResponseTime, g) ResponseLength, h)
NumberOfKeysInResponse, i) MismatchDensity

web APIs. About 65.5% of the endpoints have some form of
inappropriate usage examples (RQ1). The mismatches can be
divided into four types: undocumented keys pattern, dynamic
keys pattern, unreturned keys pattern, and type mismatched
pattern (RQ2). The value of NumberOfKeysInResponse may
be correlated with the number of mismatches, and a threshold
around ten may indicate the existence of mismatch (RQ3).
Our results should help API providers and consumers deal
with inappropriate documentation in web APIs.

In the future, we plan to implement some case studies based
on this research. These studies will provide insights on the
causes of the mismatches, which should prevent mismatches
from the API provider’s point of view. We also plan to
interview developers to evaluate their experiences of defects
due to unreliable API documentation. Furthermore, we will
address the challenge of predicting fault-prone endpoints.
Eventually, we intend to establish guidelines for API providers
to enhance the reliability of their APIs.

REFERENCES
[1] S.G. McLellan, et al., “Building more usable APIs,” IEEE Software,

15(3), pp. 78-86, 1998.
[2] L. Shi, et al., “An Empirical Study on Evolution of API Documentation,

14th International Conference on Fundamental Approaches to Software
Engineering (FASE), pp. 416-431, 2011.

[3] J.C. Zanoni, et al., “A semi-automatic source code documentation method
for small software development teams, 15th International Conference on
Computer Supported Cooperative Work in Design, pp. 113-119, 2011.

[4] W. Maalej, et al., “Patterns of Knowledge in API Reference Documenta-
tion,” IEEE Transactions on Software Engineering, 39(9), pp. 1264-1282,
2013.

[5] E. Wittern, et al., “Opportunities in Software Engineering Research for
Web API Consumption,” 1st International Workshop on API Usage and
Evolution (WAPI), pp. 7-10, 2017.

[6] B.A. Myers, J. Stylos, “Improving API usability,” Communications of the
ACM, 59(6), pp. 62-69, 2016.

[7] S.M. Sohan, et al., “A study of the effectiveness of usage examples in
REST API documentation,” IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC), pp. 53-61, 2017.

[8] https://github.com/Azure/azure-rest-api-specs (accessed 10-Jan-2019)
[9] https://swagger.io/specification/
[10] M.P. Robillard, “What Makes APIs Hard to Learn? Answers from

Developers,” IEEE Software, 26(6), pp. 27-34, 2009.
[11] G. Uddin, M.P. Robillard, “How API Documentation Fails,” IEEE

Software, 32(4), pp. 68-75, 2015.
[12] J. Li, et al., “How Does Web Service API Evolution Affect Clients?”

20th IEEE International Conference on Web Services, pp. 300-307, 2013.
[13] D.A. Menasce, “QoS issues in Web services,” IEEE Internet Computing,

6(6), pp. 72-75, 2002.
[14] H. Ed-douibi, et al., “Example-Driven Web API Specification Discov-

ery,” European Conference on Modelling Foundations and Applications
(ECMFA), pp.267-284, 2017.

[15] https://github.com/toddmotto/public-apis (accessed 10-Jan-2019)

