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Abstract—Researchers and practitioners studying best practices strive to design Machine
Learning (ML) application systems and software that address software complexity and quality
issues. Such design practices are often formalized as architecture and design patterns by
encapsulating reusable solutions to common problems within given contexts. In this paper,
software-engineering architecture and design (anti-)patterns for ML application systems are
analyzed to bridge the gap between traditional software systems and ML application systems
with respect to architecture and design. Specifically, a systematic literature review confirms that
ML application systems are popular due to the promotion of artificial intelligence. We identified
32 scholarly documents and 48 gray documents out of which 38 documents discuss 33 patterns:
12 architecture patterns, 13 design patterns, and 8 anti-patterns. Additionally, a survey of
developers reveals that there are 7 major architecture patterns and 5 major design patterns.
Then the relationships among patterns are identified in a pattern map.

THE POPULARITY OF ML techniques has
increased in recent years. ML is used in many
domains, including cyber security, IoT, and au-
tonomous cars. ML techniques rely on mathemat-
ics and software engineering. The former gen-
erates algorithms, develops capabilities to learn
from input data, and produces representative
models. The latter is employed for implementa-
tion and performance.

Although many works investigated the math-
ematics and computer science on which ML
techniques are built, few have examined their
implementation. This situation raises many con-
cerns. The first is software complexity of ML
techniques. The second is quality of the avail-

able implementations, including performance and
reliability. The third is model quality, which
may be negatively impacted by software bug.
These concerns could be alleviated if developers
could demonstrate the software quality of their
implementations. Consequently, researchers and
practitioners have been studying best practices to
design ML application systems to address issues
with software complexity and quality of ML
techniques. Such practices are often formalized as
architecture patterns and design patterns. These
patterns encapsulate reusable solutions to com-
monly occurring problems within ML application
systems and software design.

Herein we report the results of a systematic
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literature review (SLR) of good/bad design pat-
terns for ML. Based on the results, we also report
on developers’ perceptions as well as relation-
ships among extracted ML patterns1.

How the Literature Addresses Software
Engineering ML Design Patterns

We performed a SLR of both academic and
gray literature to collect SE good (bad) design
patterns for ML application systems and software.
For the academic literature, we chose Engineering
Village, which is a search platform that provides
access to 12 engineering document databases
such as Ei Compendex and Inspec. Engineering
Village can search in all recognized scholarly
engineering journals, conferences, and workshop
proceedings with a unique search query. More-
over, Engineering Village automatically detects
and removes most duplicative search results. On
August 14, 2019, we designed and used the
following query specifying “pattern” as well as
keywords related to patterns to search for doc-
uments addressing ML design practice: ((((sys-
tem) OR (software)) AND (machine learning)
AND ((implementation pattern) OR (pattern) OR
(architecture pattern) OR (design pattern) OR
(anti-pattern) OR (recipe) OR (workflow) OR
(practice) OR (issue) OR (template))) WN ALL)
+ ((cpx OR ins OR kna) WN DB) AND ((ca OR
ja OR ip OR ch) WN DT).

For the gray literature, we used a Google
search on August 16, 2019. The query was the
same as that for the academic literature: (system
OR software) ”Machine learning” (pattern OR
”implementation pattern” OR ”architecture pat-
tern” OR ”design pattern” OR anti-pattern OR
recipe OR workflow OR practice OR issue OR
template) and ”machine implementation pattern”
OR architecture pattern” OR ”design pattern” OR
anti-pattern OR recipe OR workflow OR practice
OR issue OR template.

We retrieved 32 scholarly documents and 48
gray literature documents. For each document,
two of the authors vetted whether it should be in-
cluded in our SLR or not. The titles and abstracts
were initially reviewed. Then the entire document

1Preliminary results of our SLR is presented at [1]. In this
paper, we examined all patterns and relationships among patterns
in detail. We also newly studied developers’ perceptions on
patterns.

was read to determine whether the document
pertained to software-engineering practices for
ML application systems. This process identified
19 scholarly documents and 19 gray documents.
All the data are available on-line2.

Figure 1 shows the trend in the number of
documents related to design for ML application
systems in the past decade. ML application sys-
tems have recently become popular due to the
promotion of artificial intelligence. Since 2008,
academic and gray documents have discussed
good (bad) practices of ML application systems
design.
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Figure 1. Numbers of Documents per Year

Overview of ML Patterns
Two of the authors read half of the docu-

ments. Each author extracted patterns indepen-
dently. Then the remaining author vetted each
pattern. Although 69 patterns related to the ar-
chitecture and design of ML application systems
were initially identified, only 33 remained after
the vetting process.

In general, systems and software design pro-
cesses have two major phases [2] with differ-
ent abstraction levels: architectural design and
detailed design. Similarly, the extracted patterns
can be classified into two types: ML architec-
ture patterns and ML design patterns. Documents
describing ML architecture patterns recommend
architecture designs of ML application systems
and software to address recurrent architectural
problems such as ensuring maintainability of ML
components. In contrast, ML design patterns ad-
dress recurrent detailed design problems such as
enabling proper communications among specific
modules.

2http://www.washi.cs.waseda.ac.jp/ml-patterns/
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Table 1. Extracted Architecture Patterns (NP: Number of participants who used the pattern.)

Pattern Name Problem (excerpt) Solution (excerpt) NP and
Source

Data Lake We cannot foresee the kind of analyses that will
be performed on the data and which frameworks
will be used to perform these analyses.

The data ranging from structured data to unstruc-
tured data should be stored as “raw” as possible
and the centralized data repository should allow
parallel analyses of different kinds and with
different frameworks.

5,
http://bit.ly
/33DTKTe

Distinguish Busi-
ness Logic from
ML Models

The overall business logic should be isolated as
much as possible from the ML models so that
they can be changed/overridden when necessary
without impacting the rest of the business logic.

Separate the business logic and the inference
engine, loosely coupling the business logic and
ML-specific dataflows.

4, [3]

Microservice Ar-
chitecture

ML applications may be confined to some
“known” ML frameworks and miss opportunities
for more appropriate frameworks.

Data scientists working with or providing ML
frameworks can make these frameworks avail-
able through microservices.

4,
http://bit.ly
/2DyHGrV

Data-Algorithm-
Serving-
Evaluator

Prediction systems should connect different
pieces in the data processing pipeline into
one coherent system and prototyping predictive
model.

Separate the following like MVC for ML: data
(data source and data preparator), algorithm(s),
serving, and evaluator.

2,
http://bit.ly
/2r6edmu

Event-driven ML
Microservices

Due to frequent prototyping of ML models and
constant changes, development teams must be
agile to build, deploy, and maintain complex data
pipelines.

Construct pipelines by chaining together multi-
ple microservices, each of which listens for the
arrival of some data and performs its designated
task.

2,
http://bit.ly
/2OZDuXH

Lambda
Architecture

Real-time data processing requires scalability,
fault tolerance, predictability, and other qualities.
It must be extensible.

The batch layer keeps producing views at every
set batch interval while the speed layer creates
the relevant real-time/speed views. The serving
layer orchestrates the query by querying both the
batch and speed layer, merges it.

2,
http://bit.ly
/33DTKTe

Parameter-Server
Abstraction

For distributed learning, widely accepted ab-
stractions are lacking.

Distribute both data and workloads over worker
nodes, while the server nodes maintain globally
shared parameters, which are represented as vec-
tors and matrices.

2, [4]

Daisy
Architecture

The ability to scale content production processes
must be acquired via the use of ML. Then the
coverage of that tooling must be extended over
as much of their remaining content.

Utilize Kanban, scaling, and microservice to
realize pull-based, automated, on-demand, and
iterative processes.

1,
http://bit.ly
/2DyHGrV

Gateway Routing
Architecture

When a client uses multiple services, it can
be difficult to set up and manage individual
endpoints for each service.

Install a gateway before a set of applications,
services, or deployments and use application
layer routing requests to the appropriate in-
stance.

1, [3]

Kappa Architec-
ture

It is necessary to deal with huge amount of data
with less code resource.

Support both real-time data processing and con-
tinuous reprocessing with a single stream pro-
cessing engine.

1,
http://bit.ly
/37Xkguc

Closed-Loop In-
telligence

It is necessary to address big, open-ended, time-
changing or intrinsically hard problems.

Connect machine learning to the user and close
the loop. Design clear interactions along with
implicit and direct outputs.

0,
http://bit.ly
/2L8ZpdB

Federated Learn-
ing

Standard machine learning approaches require
centralizing the training data on one machine or
in a datacenter.

Employ Federated Learning, which enables mo-
bile phones to collaboratively learn a shared
prediction model while keeping all the training
data on the device.

0,
http://bit.ly
/2qaRJk3

In addition to the ML architecture patterns
and design patterns, we also identified ML anti-
patterns. Similar to general anti-patterns [5], ML
anti-patterns (including code smells and technical
debts [6]) describe commonly occurring situa-
tions that generate negative consequences in ML
application systems and software design.

Tables 1, 2 and 3 list the extracted ML pat-
terns. Of these, 18 (55%) were extracted from
the scholarly documents, while 15 (45%) were
from the gray documents. Twelve (36%) are ML
architecture patterns, and thirteen (39%) are ML
design patterns, suggesting that the unique nature

of design in ML application systems and software
appears at both of the architecture level and the
detailed design level. The remaining are 8 ML
anti-patterns (24%).

How Engineers’ Perceived Software
Engineering ML Design Patterns

ML techniques are concrete solutions to prac-
tical problems. Hence, ML developers may al-
ready have built a body of knowledge on the good
(bad) design practices of ML development. To
clarify how ML developers perceive existing ML
patterns, we asked 19 developers and researchers
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Table 2. Extracted ML Design Patterns (NP: Number of participants who used the pattern.)

Pattern Name Problem (excerpt) Solution (excerpt) NP and
Source

ML Versioning ML models and their several versions may
change the behaviour of the overall ML appli-
cations.

Record the ML model structure, training data,
and training system to ensure a reproducible
training process.

4, [7]

Wrap Black-Box
Packages into
Common APIs

Using generic, independent ML frameworks of-
ten results in different glue code for each frame-
work, for which a massive amount of supporting
code is written to get data into and out of the
framework from and to the rest of the applica-
tion.

Wrap black-box packages into common APIs
to make supporting infrastructure more reusable
and to reduce the cost of changing packages.

4, [4]

Test
Infrastructure
Independently
from ML

It is difficult to identify errors when infrastruc-
ture and machine learning are mixed.

Ensure that the infrastructure is testable and the
learning parts of the system are encapsulated so
that everything around it can be tested.

3,
http://bit.ly
/34zt2wx

Handshake
(Hand Buzzer)

A ML system depends on inputs delivered out-
side of the normal release process.

Create a handshake normalization process, reg-
ularly check for significant changes, and send
ALERTS.

2,
http://bit.ly
/2qdsWvG

Isolate and Val-
idate Output of
Model

Machine learning models are known to be un-
stable and vulnerable to adversarial attacks and
to noise in data and data drift overtime.

Encapsulate ML models within rule-base safe-
guards and use redundant and diverse architec-
ture that mitigates and absorbs the low robust-
ness of ML models.

2, [8]

Canary Model A surrogate ML that approximates the behavior
of the best ML model must be built to provide
explainability.

Run the canary inference pipeline in parallel
with the primary inference pipeline to monitor
prediction differences.

1,
http://bit.ly
/35U0C0i

Decouple
Training Pipeline
from Production
Pipeline

It is necessary to separate and quickly change
the ML data workload and stabilize the training
workload to maximize efficiency.

Physically isolate different workloads to dif-
ferent machines. Then optimize the machine
configurations and the network usage.

1, [7]

Descriptive Data
Type for Rich In-
formation

The rich information used and produced by ML
systems is often encoded with plain data types
like raw floats and integers.

Design a robust system, where the model pa-
rameter knows if it is a log-odds multiplier or
a decision threshold, and a prediction knows
information about the model.

1, [4]

Design
Holistically
about Data
Collection
and Feature
Extraction

The system to prepare data in an ML-friendly
format may become a pipeline jungle. Managing
these pipelines is difficult and costly.

Avoid pipeline jungles by thinking holistically
about data collection and feature extraction that
can dramatically reduce ongoing costs.

1, [4]

Reexamine
Experimental
Branches
Periodically

The code-paths accumulated by individual
changes can create a growing debt due to the
increasing difficulties of maintaining backward
compatibility.

Reexamine each experimental branch periodi-
cally to see what can be removed to eliminate
glue code and pipeline jungles.

1, [4]

Reuse Code
between Training
Pipeline and
Serving Pipeline

Training-serving skew can be caused by a dis-
crepancy between how data in the training and
serving pipelines are handled.

Reuse code between training pipeline and serv-
ing pipeline by preparing objects that store re-
sults in an understandable way for humans.

0,
http://bit.ly
/34zt2wx

Separation of
Concerns and
Modularization
of ML
Components

ML applications must accommodate regular and
frequent changes to their ML components.

Decouple at different levels of complexity from
simplest to most complex.

0, [9]

Secure Aggrega-
tion

The system needs to communicate and aggregate
model updates in a secure, efficient, scalable,
and fault-tolerant way.

Encrypt data from each mobile device in Feder-
ated learning and calculate totals and averages
without individual examination.

0,
http://bit.ly
/2qaRJk3

at Japanese companies and research organizations
to complete a survey during a workshop in Octo-
ber 2019. After a brief introduction of all patterns,
we inquired on whether or not they used any of
the ML architecture and design patterns.

As shown in Table 1, multiple partici-
pants used the seven major ML architecture
patterns (out of 12): “Data-Algorithm-Serving-

Evaluator”, “Data Lake“, “Distinguish Business
Logic from ML Models”, “Microservice Ar-
chitecture”, “Event-driven ML Microservices”,
“Lambda Architecture”, and “Parameter-Server
Abstraction”. And, all ML architecture patterns
except for “Federated Learning” and “Closed-
Loop Intelligence” are used at least by one par-
ticipant.
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Table 3. Extracted ML Anti-Patterns
Pattern
Name

Problem (excerpt) Source

Big Ass
Script Ar-
chitecture

When all code is placed in one
big ass script, it becomes diffi-
cult to reuse in future analysis,
understand how it works, and
debug.

http://bit.ly
/35QPb9N

Abstraction
Debt

For distributed learning, widely
accepted abstractions are lack-
ing.

[4]

Dead
Exper-
imental
Codepaths

The code-paths accumulated by
individual changing can create
a growing debt due to the in-
creasing difficulties of maintain-
ing backward compatibility.

[4]

Glue
Code

Glue code is costly in the long
term because it tends to freeze a
system to the peculiarities of a
specific package.

[4]

Multiple-
Language
Smell

Using multiple languages in-
creases the cost of effective test-
ing and can increase the diffi-
culty of transferring ownership
to other individuals.

[4]

Pipeline
Jungles

The system to prepare data in
an ML-friendly format may be-
come a pipeline jungle, and
managing these pipelines is dif-
ficult and costly.

[4]

Plain-Old-
Data Type
Smell

The rich information used and
produced by ML systems is
often encoded with plain data
types like raw floats and inte-
gers.

[4]

Undeclared
Con-
sumers

Undeclared consumers are dan-
gerous because they create a hid-
den tight coupling of model MA
to other parts of the stack.

[4]

In contrast, multiple participants used the five
major ML design patterns (out of 13 in Table
2): “Handshake”, “Isolate and Validate Output
of Model”, “ML Versioning”, “Test Infrastruc-
ture Independently from ML”, and “Wrap Black-
Box Packages into Common APIs”. In addition,
none of the participants reported using the three
ML design patterns, suggesting that ML design
patterns are less accepted in comparison to ML
architecture patterns.

Example of Major Software Engineering
ML Pattern

Here, we describe one major ML architecture
pattern and its usage. We selected “Distinguish
Business Logic from ML Model” since it was
popular among our survey participants. Moreover,
it provides a clear decomposition of a ML system
in multiple layers and components. For brevity,
participants, collaborations, implementation, and
known uses are omitted.
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Figure 2. Structure of Distinguish Business Logic
from ML Model pattern [3]

Pattern Name
Distinguish Business Logic from ML Model
(originally named as “Multi-Layer Architectural
Pattern” [3])

Intent
Isolate failures between business logic and ML
learning layer to help developers debug ML ap-
plication systems easily.

Also Known As
Machine Learning System Architectural Pattern
for Improving Operational Stability.

Problem
ML application systems are complex because
their ML components must be (re)trained reg-
ularly and have an intrinsic non-deterministic
behavior. Similar to other systems, the business
requirements for these systems and the ML algo-
rithms change over time.

Solution
Define clear APIs between the traditional and ML
components. Place the business and ML com-
ponents with different responsibilities into three
layers (Fig. 2). Divide data flows into three.

Applicability
It is applicable to any ML application system with
outputs that depend on ML techniques.

Consequences
Decoupling “traditional” business and ML com-
ponents allows the ML components to be mon-
itored and adjusted to meet users’ requirements
and changing inputs.
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Figure 3. Example of Chatbot System Architecture by applying “Distinguish Business Logic from ML Model”

Usage Example
Figure 3 presents an example of implementation
of the pattern “Distinguish Business Logic from
ML Model” in a Slack-based Chatbot system.
By referring to the architecture pattern, we easily
specified necessary elements as well as relation-
ships among them while having clear separation
between the Chatbot service (as the business
logic) and the underlying ML components.

ML Pattern Map
To help developers navigate the patterns, we

identified the following four types of relationships
among the patterns using basic relation types
[10]: X is similar to Y but has different objectives,
X can use Y in its solution, X and Y can be
combined to solve larger problems, and, X can
mitigate the problem of Y.

Figure 4 shows a result of identification of
the relationships among ML patterns as a pattern
map. For example, “Closed-Loop Intelligence” is
an architecture pattern to have clear interactions
with users; it would mitigate the problem of “Un-
declared Customers”. “Closed-Loop Intelligence”
can be combined with other high-level architec-

ture patterns that address business logic and user
interactions such as “Distinguish Business Logic
from ML Models” and “Data-Algorithm-Serving-
Evaluator”. “Gateway Routing Architecture” is
similar to “Distinguish Business Logic from ML
Models” since both use “Data Lake” in their
solutions to handle variety of data; however,
objectives of these two architecture patterns are
quite different.

According to the number of connected rela-
tionships, the fundamental patterns are “Big Ass
Script Architecture” and “Separation of Concerns
and Modularization of ML Components”, sug-
gesting that developers should initially identify
the corresponding problems in their design and
solve them by referring to these patterns as well
as connected related patterns.

In terms of the anti-patterns, we suggest that
developers should refactor their code as soon as
these symptoms appear by applying correspond-
ing design patterns connected in the pattern map.

CONCLUSION
To bridge the gap between traditional software

systems and ML application systems with respect
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Figure 4. Pattern Map showing classifications and relationships among ML patterns

to architecture and design, software-engineering
architectural and design (anti-)patterns for ML
application systems were analyzed via an SLR
and a survey of developers. ML application sys-
tems are quite popular due to the recent promo-
tion of artificial intelligence. From the 32 schol-
arly documents and 48 gray documents identified
in the SLR, 12 ML architecture patterns, 13 ML
design patterns, and 8 ML anti-patterns were
identified. A survey of developers reveals that
there are 7 major ML architecture patterns and
5 major ML design patterns. The relationships
among the patterns were elucidated.

In the future, we plan to write all patterns
into a standardized format because not all the
identified patterns are well written. Additionally,
we intend to investigate the impact of SE pat-
terns on the quality attributes of ML application
systems. These patterns will be validated by not
only sharing these patterns to participants at the
Writers’ Workshop at the PLoP conference series
but also by contacting the original designer. We
also plan to involve more practitioners from the
community by continuing the survey and the
SLR.
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