
Studying Software Engineering Patterns for
Designing Machine Learning Systems

Hironori Washizaki
Waseda University /

National Institute of Informatics /
SYSTEM INFORMATION /

eXmotion, Tokyo, Japan
washizaki@waseda.jp

Hiromu Uchida
Waseda University

Tokyo, Japan
eagle h.21@toki.waseda.jp

Foutse Khomh
Polytechnique Montréal
Montréal, QC, Canada

foutse.khomh@polymtl.ca

Yann-Gaël Guéhéneuc
Concordia University

Montréal, QC, Canada
yann-gael.gueheneuc@concordia.ca

Abstract—Machine-learning (ML) techniques are becoming
more prevalent. ML techniques rely on mathematics and soft-
ware engineering. Researchers and practitioners studying best
practices strive to design ML systems and software that address
software complexity and quality issues. Such design practices
are often formalized as architecture and design patterns by
encapsulating reusable solutions to common problems within
given contexts. However, a systematic study to collect, classify,
and discuss these software-engineering (SE) design patterns for
ML techniques have yet to be reported. Our research collects
good/bad SE design patterns for ML techniques to provide devel-
opers with a comprehensive classification of such patterns. Herein
we report the preliminary results of a systematic-literature review
(SLR) of good/bad design patterns for ML.

Index Terms—Machine Learning, Architecture Patterns, De-
sign Patterns, Anti-patterns, ML Patterns

I. INTRODUCTION

The popularity of Machine-learning (ML) techniques has
increased in recent years. They are being used in many
domains, including cyber security, IoT, and autonomous cars.
ML techniques rely on mathematics and software engineering.
Mathematics is used to generate the algorithms, develop ca-
pabilities to learn from input data, and produce representative
models. On the other hand, software engineering is employed
for implementation and robust performance.

Although many works have investigated the mathematics
and computer science on which ML techniques are built, few
have examined their implementation, which raises many con-
cerns. The first is the software complexity of ML techniques.
The second is the quality of the available implementations, in-
cluding performance and reliability. The third is the quality of
the models, which may be negatively impacted by a software
bug. These concerns could be alleviated if developers could
demonstrate the software quality of their implementations of
the ML techniques. Consequently, researchers and practition-
ers have been studying best practices to design ML systems
and software to address issues with software complexity and
quality of ML techniques. Such practices are often formalized
as architecture patterns and design patterns by encapsulating
reusable solutions to commonly occurring problems within the
given contexts in ML systems and software design.

Many resources available on the Internet discuss various
ML techniques and their concrete uses from putting together
a pipeline to implementing a Markov Decision Process. Such
resources are known as gray literature, and are useful to
developers putting together ML systems as they provide many
examples and discuss good/bad design patterns.

A study has not systematically collected, classified, and
discussed these software-engineering (SE) design patterns for
ML techniques, although such patterns could greatly help
software developers improve ML techniques for their users.
To provide developers with a comprehensive classification of
such patterns, we aim to collect good/bad SE design patterns
for ML techniques. Herein we report the preliminary results
of a systematic literature review (SLR) of good/bad design
patterns for ML. Specifically, we focus on (1) our method,
(2) architecture and design (anti-)patterns, and (3) preliminary
and quantitative results. We also report on ML developers’
understanding of the implementation of ML techniques by
answering the following research questions:

RQ1. How do ML developers perceive and tackle the
design of ML systems and software? We conducted a
questionnaire-based survey, which shows that ML engineers
have little knowledge of the architecture and design patterns
that could assist in developing ML systems and software.

RQ2. Does academic and gray literature address the design
of ML systems and software? In our SLR of both academic
and gray literature, we identified 19 academic papers and 19
gray documents. These were analyzed to extract patterns.

RQ3. Can ML architecture and design patterns be classified?
We distinguished SE patterns for ML (such as patterns for
designing ML software) and non-SE patterns for ML (such
as patterns for designing ML models) by analyzing the
contents of the extracted documents. We classified these
SE patterns with respect to two processes: the typical
ML pipeline process and the typical SE process from
ISO/IEC/IEEE 12207.

RQ4. What software-engineering architecture and design pat-
terns for ML application systems and software exist? From
our collection of patterns, we confirmed that SE patterns
for ML do exist and are related to different phases of the



software-development process and ML pipeline. We also
provide some examples of such patterns.
The rest of this paper is organized as follows. Section II

summarizes related works. Section III describes our survey
and answers RQ1. Section IV presents our SLR and a subset
of the results. Section V discusses our results, and Section VI
concludes this paper.

II. RELATED WORK

Previous surveys have examined general architecture and
design patterns, e.g., [1]–[3], but focus mainly on object-
oriented design. Surveys on architecture and design patterns
exist for specific domains, e.g., multi-agent systems [4], IoT
[5], or security [6]. For software engineering of ML appli-
cations, case studies, practices, and patterns are available as
independent documents. However, this is the first survey and
the comprehensive literature review on ML architecture and
design patterns.

III. SURVEY

ML techniques are concrete solutions to practical problems.
Hence, ML developers may already have built a body of
knowledge on the good/bad design practices of ML devel-
opment. RQ1 aims to validate the above assertion.

To answer RQ1, we asked 760+ developers at Japanese
companies through Japan-wide mailing lists of developers and
direct contact with developers during a workshop on software
engineering. Developers answered three questions about SE
patterns for ML systems anonymously. These questions dis-
tinguished between “patterns”, which are defined as “formal
practices” in any structured form, and ad-hoc practices, which
are suggestions or lore shared by developers without a formal
form, e.g., suggestions extracted from a blog text.
SQ1. Do you refer to existing reference architectures or

architectural patterns to design your own ML systems?
SQ2. How do you acquire and elicit requirements for ML

systems? Do you use patterns or practices, a template or
process, or an ad-hoc method?

SQ3. How do you ensure non-functional features of ML
systems? Do you use patterns or practices, a template or
process, or an ad-hoc method?
Out of the 760+ contacted participants, 9 answered at least

the first question for a response rate of 1%. We expected
such a low participation rate of because we contacted mostly
developers, who do not work with ML systems.

TABLE I
SUMMARY OF THE SURVEY RESULTS

SQ1. Yes No
3 (General architecture, design and cloud patterns) 5

SQ2. Patterns Template or Process Ad-hoc
0 2 7

SQ3. Patterns Process Ad-hoc
1 1 6

Table I summarizes the survey results. The number of
answers differs by column because some participants did not

answer all three questions. Most of the developers used ad-hoc
practices. If they used patterns, developers mentioned general
patterns like the design patterns by Gamma et al. [7] rather
than patterns dedicated to ML development.

Thus, we conclude the survey as follows:

RQ1. How do ML developers perceive and tackle the design of
ML systems and software? ML developers use either general
patterns or ad-hoc patterns. They do not use patterns
dedicated to SE design of ML systems and software.

IV. SYSTEMATIC LITERATURE REVIEW

A. Queries

We performed an SLR of both academic and gray literature
to collect software-engineering good/bad design patterns for
ML systems and software. For the academic literature, we
chose Engineering Village, which is a search platform pro-
viding access to 12 trusted engineering document databases,
such as Ei Compendex and Inspec. The Engineering Village
gives us the ability to search in all recognized scholarly
engineering journals, conference, and workshop proceedings
over different databases with a unique search query. Moreover
the Engineering Village allows us to detect and remove most of
duplicates in the search results automatically. On August 14,
2019, we designed and used the following query specifying
“pattern” as well as keywords related to patterns including
“recipe”, “workflow”, “practice” and “issue” to search for
documents addressing ML design practice as much as possible.

((((system) OR (software)) AND (machine
learning) AND ((implementation pattern) OR
(pattern) OR (architecture pattern) OR (

design pattern) OR (anti-pattern) OR (
recipe) OR (workflow) OR (practice) OR (
issue) OR (template))) WN ALL) + ((cpx OR
ins OR kna) WN DB) AND (({ca} OR {ja} OR {
ip} OR {ch}) WN DT)

For the gray literature, we used a Google search engine on
August 16, 2019, with the following query that is basically
the same as that for the academic literature:

(system OR software) "Machine learning" (
pattern OR "implementation pattern" OR "
architecture pattern" OR "design pattern"
OR anti-pattern OR recipe OR workflow OR
practice OR issue OR template)

and:

"machine implementation pattern" OR "
architecture pattern" OR "design pattern"
OR anti-pattern OR recipe OR workflow OR
practice OR issue OR template

We retrieved 23 academic papers (S), and snowballing
elucidated 9 additional scholarly documents (A). The Google
Search Engine yielded 48 gray literature documents (G).

For each document, two of the authors vetted whether
it should be included in our SLR or not. We started from
the titles and abstracts. Then we read the entire document



to determine whether the document pertained to software-
engineering practices for ML systems. We kept 10 of the
23 scholarly papers and 25 gray documents. Of the gray
documents, 6 were actual papers or books not (yet) referenced
in Engineering Village and were added to set A. Below, we
call these papers, books, and documents “documents”. From
snowballing, we kept three additional scholarly documents.
Consequently, there were 10 papers s1–s10 [8]–[17] in set S,
19 (=25-6) documents g01–g19 [18]–[36] in the set G, and 9
(=3+6) documents a01–a09 [37]–[45] in set A. All the data
are available on-line1.

B. RQ2. Does academic and gray literature address the design
of ML systems and software?

Our SLR indicated that ML systems are very popular thanks
to the promotion of artificial intelligence in recent years.
Figure 1 shows the trend in the number of documents related
to SE design for ML systems in the past decade.

Fig. 1. Numbers of Documents per Year

ML systems are discussed in online communities from
mathematics and library builders to the Maker Culture. SE de-
velopment of ML systems is the subject of academic research.
In gray literature, we found many documents discussing ML
systems, often from the data scientists’ viewpoints.

RQ2. Does academic and gray literature address the design
of ML systems and software? There are some academic
documents and gray ones related to SE patterns to discuss
good/bad practices of ML systems design. Although they
are at different levels of abstraction, they mainly focus on
data management.

C. RQ3. Can ML architecture and design patterns be classi-
fied?

Through our SLR and reading the documents, we noted
various characteristics that could help classify patterns. In the
academic and gray literature, SE patterns for ML systems are
often presented in the context of the ML pipeline or the SE
development process.

Consequently, we identified a general pipeline and devel-
opment process for each architectural and design pattern. We
used the pipeline presented by Microsoft [41]. This pipeline

1http://www.washi.cs.waseda.ac.jp/iwesep19/

is composed of nine stages: Model Requirements, Data Col-
lection, Data Cleaning, Data Labelling, Feature Engineering,
Model Training, Model Evaluation, Model Deployment, and
Model Monitoring. For the software development process, we
chose the software implementation processes specified in the
ISO/IEC/IEEE 12207:2008 standard [46], which includes Re-
quirements Analysis, Architectural Design, Detailed Design,
Construction, Integration, and Qualification Testing. These
pipelines and processes describe the stages and phases to
develop and run any ML application system, regardless of its
purpose and domain.

Herein we aim to answer the following question:

RQ3. Can ML architecture and design patterns be classified?
SE patterns for ML systems can be divided along two main
dimensions: ML pipeline and SE development process.

D. RQ4. What software-engineering architecture and design
patterns for ML application systems and software exist?

Two of the authors then read half of the documents. Each
author extracted patterns independently. Then the other author
vetted each pattern. The extraction process identified 69 pat-
terns. However, the vetting process reduced this to 33 patterns
related to the architecture and design of ML systems. Table II
shows the list of extracted ML (anti-)architecture and design
patterns. Of these, 18 (55%) patterns were extracted from the
scholarly papers and documents, while 15 (45%) were from
the gray documents.

Then we classified each pattern according to the stages of
the ML pipeline and phases of the SE development process.
Table III shows our classification. The architecture patterns
and design patterns pertain mostly to the Architectural Design,
Detailed Design, and Construction phases. Some pertain to
later phases. On the other hand, most patterns are associated
with the later stages of the ML pipeline. We explain this
observation by focusing on architecture patterns and design
patterns that mostly impact later stages.

Thus, we aim to answer the following question:

RQ4. What software-engineering architecture and design pat-
terns for ML application systems and software exist? Several
architecture patterns and design patterns currently exist.
Some patterns are applicable to many stages of the pipeline
or many phases of the development process. However,
others are only applicable to one stage or phase only.

V. DISCUSSIONS

Here we describe two extracted patterns and discuss the
threats to validity. For brevity, we omit information about the
participants, collaborations, implementation, sample code, and
known uses.

A. Example of Architectural Pattern

a) Pattern Name: s10a: Distinguish Business Logic from
ML Model (originally named as “Multi-Layer Architectural
Pattern” [17])

b) Intent: Isolate failures between business logic and ML
learning to help developers debug ML application systems.



TABLE II
EXTRACTED PATTERNS (“ANTI?” DENOTES ANTI-PATTERNS)

Source ID Pattern Name Anti?
[9] s02a Glue Code Y
[9] s02b Wrap Black-Box Packages into

Common APIs
[9] s02c Pipeline Jungles Y
[9] s02d Design Holistically about Data Col-

lection and Feature Extraction
[9] s02e Dead Experimental Codepaths Y
[9] s02f Reexamine Experimental Branches

Periodically
[9] s02g Abstraction Debt Y
[9] s02h Parameter-Server Abstraction
[9] s02i Plain-Old-Data Type Smell Y
[9] s02j Descriptive Data Type for Rich In-

formation
[9] s02k Multiple-Language Smell Y
[9] s02l Undeclared Consumers Y

[10] s03a Decouple Training Pipeline from
Production Pipeline

[10] s03b ML Versioning
[12] s05 Isolate and Validate Output of Model
[17] s10a Distinguish Business Logic from ML

Models
[17] s10b Gateway Routing Architecture
[40] a04 Separation of Concerns and Modu-

larization of ML Components
[19] g02a Federated Learning
[19] g02b Secure Aggregation
[22] g05 Handshake or Hand Buzzer
[24] g07a Test Infrastructure Independently

from ML
[24] g07b Reuse Code between Training

Pipeline and Serving Pipeline
[25] g08 Data-Algorithm-Serving-Evaluator
[26] g09 Closed-Loop Intelligence
[27] g10 Canary Model
[28] g11 Event-driven ML Microservices
[29] g12 Daisy Architecture
[32] g15a Big Ass Script Architecture Y

[29], [32] g15b Microservice Architecture
[31], [33], [44] g16 Data Lake

[34] g17 Kappa Architecture
[31], [35], [45] g18 Lambda Architecture

c) Also Known As: Machine Learning System Architec-
tural Pattern for Improving Operational Stability.

d) Motivation: ML systems are complex because their
ML components must be (re)trained regularly and have an
intrinsic non-deterministic behavior. Similar to other systems,
the business requirements for these systems as well as ML
algorithms change over time.

e) Structure: Define clear APIs between traditional and
ML components. Place business and ML components with
different responsibilities into three layers (Fig. 2). Divide data
flows into three.

f) Applicability: Any ML systems with outputs that
depend on ML techniques.

g) Consequences: Decoupling “traditional” business and
ML components allows the ML components to be monitored
and adjusted to meet users’ requirements and changing inputs.

B. Example of Design Anti Pattern

a) Pattern Name: s02c: Pipeline Jungle [9]

Fig. 2. Structure of Distinguish Business Logic from ML Model pattern [17]

b) Intent: Maintain one controllable, straightforward
pipeline of ML components.

c) Motivation: ML systems combine several ML com-
ponents with different input and output formats. These com-
ponents interact with business components.

d) Problem: ML systems may include “glue code” to
scrape, join, and sample input/output data into one pipeline.
As this pipeline is fragile, it must be maintained and tested
carefully. Glue code is a technical debt that can prevent further
innovations. Additionally, testing requires expensive end-to-
end integration tests.

e) Refactored Solution: Define unit and component tests.
If possible, convert input/output files into first-class objects
and glue code into clear APIs.

f) Applicability: Any ML application system using dif-
ferent techniques.

g) Related Patterns: s02a: Avoid Glue Code, s02b: Wrap
Black-Box Packages into Common APIs, s02d: Design Holis-
tically about Data Collection and Feature Extraction

C. Threats to Validity

Surveys have threats to their construct, internal, external,
and conclusion validities. It is possible that our survey does
not ask relevant or answerable questions due to its construct.
Internally, the questions of our survey could be contradictory
or misleading. However, Section III demonstrates the relevance
and answerability of our study as well as alleviates this
issue of being contradictory. Externally, our questions and
their answers may not be generalizable to other participants
or domains. However, our questions are general and do not
assume any particular domain. Finally, it is possible that
incorrect conclusions are drawn from the survey responses.
However, our conclusions are consistent with the data.

SLRs can also [47] have threats to the internal validity and
reliability of the results. One threat to the internal validity
is the cause-effect conclusion that we drew from the SLR
process and the results. To address this, we provide evidence
from the data for each of the research questions. Another
threat is the reliability of the quality and rigor in which the
SLR was conducted. Section IV details our research steps and
provides quantitative data for each step. Additionally, all of
our data is available online. Another threat to reliability is



TABLE III
CLASSIFICATION OF THE IDENTIFIED PATTERNS

M
od

el
R

eq
ui

re
m

en
ts

D
at

a
C

ol
le

ct
io

n

D
at

a
C

le
an

in
g

D
at

a
L

ab
el

lin
g

Fe
at

ur
e

E
ng

in
ee

ri
ng

M
od

el
Tr

ai
ni

ng

M
od

el
E

va
lu

at
io

n

M
od

el
D

ep
lo

ym
en

t

M
od

el
M

on
ito

ri
ng

Requirements Analysis a04 a04 a04, g11 a04, g11
Architectural Design g02a,

g02b,
g05, g09

s03a,
a04,
g02a,
g02b

g07a, a04 g07a, g07b, s03a, s05, s10b, a04,
s02a, s02b, s02c, s02d, s02e, s02f,
g10, g11, g02a, g02b, g05, g08,
g09, g15a, g15b, g16, g17, g18,
s10a

s05, s10b, a04,
g10, g09, g11,
g16, g17, g18

Detailed Design s02e, s02f, g10 g07b, s02a, s02b, s02i, s02j, g10,
g11

s02i, s02j, g11

Construction s02e, s02f g07b, s02a, s02b, s02c, s02d, s02e,
s02f, s02g, s02h, s02i, s02j, s02k,
g11

s02i, s02j, g11

Integration s03a s02e, s02f g07b, s03a, s05, s10b, s02e, s02f,
s02l, g10

s05, s10b, s02l,
g10

Qualification Testing g07a, s02e, s02f g07a, s03b, s02e, s02f s03b

that an independent third-party has not vetted all the identified
(anti)patterns. To address this, we intend to participate in
Writers’ Workshops at the Pattern Languages of Programs
(PLoP) conference series2 in order to receive the community’s
feedback on each pattern before publishing them.

VI. CONCLUSION

This study collects, classifies, and analyzes software-
engineering architectural and design (anti-)patterns for ML
systems to bridge the gap between traditional software systems
and ML systems with respect to architecture and design. A
survey of software developers and an SLR of ML systems
and software in both academic and gray literature answer the
four research questions. RQ1 confirms that SE developers are
concerned with the complexity of ML systems and their lack
of knowledge of the architecture and design (anti-)patterns.
RQ2 demonstrates that the gray literature contains more (anti-
)patterns than in the academic literature. RQ3 shows that SE
patterns for ML systems are divided between two processes:
the ML pipeline and SE development. RQ4 provides SE
patterns for designing ML systems and some examples.

As a future work, we will complete our classification of
the SE patterns for ML systems and produce a map of these
patterns. Since not all patterns identified in this paper are
originally written well like shown in the example subsection,
we will write down all patterns in the pattern format. We
will also investigate the impact of SE patterns on the quality
attributes of ML systems. We will submit these patterns to
the Writers’ Workshop at the PLoP conference series. For
further validation of identified ML patterns, we will contact
developers only who work with ML systems.

ACKNOWLEDGEMILENT

The authors would like to thank Prof. Naoshi Uchihira, Mr.
Norihiko Ishitani, Dr. Takuo Doi, Dr. Shunichiro Suenaga, Mr.

2https://hillside.net/conferences/

Yasuhiro Watanabe and Prof. Kazunori Sakamoto for their
helps. This work was supported by JST-Mirai Program Grant
Number JP18077318, Japan.

REFERENCES

[1] P. Avgeriou and U. Zdun, “Architectural patterns revisited - A pattern
language,” in EuroPLoP’ 2005, Tenth European Conference on Pattern
Languages of Programs, Irsee, Germany, July 6-10, 2005, 2005, pp.
431–470.

[2] A. Ampatzoglou, S. Charalampidou, and I. Stamelos, “Research state
of the art on gof design patterns: A mapping study,” Journal of Systems
and Software, vol. 86, no. 7, pp. 1945–1964, 2013. [Online]. Available:
https://doi.org/10.1016/j.jss.2013.03.063

[3] B. B. Mayvan, A. Rasoolzadegan, and Z. G. Yazdi, “The state of
the art on design patterns: A systematic mapping of the literature,”
Journal of Systems and Software, vol. 125, pp. 93–118, 2017. [Online].
Available: https://doi.org/10.1016/j.jss.2016.11.030

[4] J. Juziuk, D. Weyns, and T. Holvoet, “Design patterns for multi-
agent systems: A systematic literature review,” in Agent-Oriented
Software Engineering - Reflections on Architectures, Methodologies,
Languages, and Frameworks, 2014, pp. 79–99. [Online]. Available:
https://doi.org/10.1007/978-3-642-54432-3\ 5

[5] H. Washizaki, N. Yoshioka, A. Hazeyama, T. Kato, H. Kaiya, S. Ogata,
T. Okubo, and E. B. Fernández, “Landscape of iot patterns,” in
Proceedings of the 1st International Workshop on Software Engineering
Research & Practices for the Internet of Things, SERP4IoT@ICSE
2019, Montreal, QC, Canada, May 27, 2019., 2019, pp. 57–60.
[Online]. Available: https://dl.acm.org/citation.cfm?id=3354013

[6] P. Ponde and S. Shirwaikar, “An exploratory study of the security
design pattern landscape and their classification,” IJSSE, vol. 7, no. 3,
pp. 26–43, 2016. [Online]. Available: https://doi.org/10.4018/IJSSE.
2016070102

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns –
Elements of Reusable Object-Oriented Software, 1st ed. Addison-
Wesley, 1994.

[8] R. Shams, “Developing machine learning products better and faster at
startups,” IEEE Engineering Management Review, vol. 46, pp. 36–39,
09 2018.

[9] D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner,
V. Chaudhary, M. Young, J. Crespo, and D. Dennison, “Hidden technical
debt in machine learning systems,” in Advances in Neural Information
Processing Systems 28: Annual Conference on Neural Information
Processing Systems 2015, December 7-12, 2015, Montreal, Quebec,
Canada, 2015, pp. 2503–2511. [Online]. Available: http://papers.nips.
cc/paper/5656-hidden-technical-debt-in-machine-learning-systems



[10] C. Wu, D. Brooks, K. Chen, D. Chen, S. Choudhury, M. Dukhan,
K. M. Hazelwood, E. Isaac, Y. Jia, B. Jia, T. Leyvand, H. Lu,
Y. Lu, L. Qiao, B. Reagen, J. Spisak, F. Sun, A. Tulloch, P. Vajda,
X. Wang, Y. Wang, B. Wasti, Y. Wu, R. Xian, S. Yoo, and
P. Zhang, “Machine learning at facebook: Understanding inference
at the edge,” in 25th IEEE International Symposium on High
Performance Computer Architecture, HPCA 2019, Washington, DC,
USA, February 16-20, 2019, 2019, pp. 331–344. [Online]. Available:
https://doi.org/10.1109/HPCA.2019.00048

[11] C. Renggli, B. Karlas, B. Ding, F. Liu, K. Schawinski, W. Wu, and
C. Zhang, “Continuous integration of machine learning models with
ease.ml/ci: Towards a rigorous yet practical treatment,” CoRR, vol.
abs/1903.00278, 2019. [Online]. Available: http://arxiv.org/abs/1903.
00278

[12] M. Kläs and A. M. Vollmer, “Uncertainty in machine learning
applications: A practice-driven classification of uncertainty,” in
Computer Safety, Reliability, and Security - SAFECOMP 2018
Workshops, ASSURE, DECSoS, SASSUR, STRIVE, and WAISE,
Västerås, Sweden, September 18, 2018, Proceedings, 2018, pp. 431–438.
[Online]. Available: https://doi.org/10.1007/978-3-319-99229-7\ 36

[13] A. Ahmed, U. Abdullah, and M. J. Sawar, “Software architecture of a
learning apprentice system in medical billing,” Independent Researchers,
Tech. Rep., 2010.

[14] S. Bethard, P. V. Ogren, and L. Becker, “Cleartk 2.0: Design
patterns for machine learning in UIMA,” in Proceedings of the Ninth
International Conference on Language Resources and Evaluation,
LREC 2014, Reykjavik, Iceland, May 26-31, 2014., 2014, pp.
3289–3293. [Online]. Available: http://www.lrec-conf.org/proceedings/
lrec2014/summaries/218.html

[15] S. Nalchigar, E. S. K. Yu, Y. Obeidi, S. Carbajales, J. Green,
and A. Chan, “Solution patterns for machine learning,” in Advanced
Information Systems Engineering - 31st International Conference,
CAiSE 2019, Rome, Italy, June 3-7, 2019, Proceedings, 2019, pp. 627–
642. [Online]. Available: https://doi.org/10.1007/978-3-030-21290-2\
39

[16] Q. Liu, P. Li, W. Zhao, W. Cai, S. Yu, and V. Leung, “A survey on
security threats and defensive techniques of machine learning: A data
driven view,” IEEE Access, vol. 6, pp. 12 103–12 117, 02 2018.

[17] H. Yokoyama, “Machine learning system architectural pattern for
improving operational stability,” in IEEE International Conference on
Software Architecture Companion, ICSA Companion 2019, Hamburg,
Germany, March 25-26, 2019, 2019, pp. 267–274. [Online]. Available:
https://doi.org/10.1109/ICSA-C.2019.00055

[18] “Scaling machine learning at uber with michelangelo,” https://eng.uber.
com/scaling-michelangelo/.

[19] “Federated learning: Collaborative machine learning without
centralized training data,” https://ai.googleblog.com/2017/04/
federated-learning-collaborative.html.

[20] “Design patterns for deep learning,” http://www.deeplearningpatterns.
com/doku.phphttps://www.deeplearningpatterns.com/doku.php?id=
overview.

[21] “Design patterns for machine learning in
production,” https://www.slideshare.net/0xdata/
design-patterns-for-machine-learning-in-production.

[22] “Patterns (and anti-patterns) for developing machine learning systems,”
https://www.usenix.org/legacy/events/sysml08/tech/rios talk.pdf.

[23] “The mvc for machine learning: Data-
model-learner (dml),” https://hackernoon.com/
the-mvc-for-machine-learning-data-model-learner-dml-8127d793f930.

[24] “Rules of machine learning: Best practices for ml engineering,”
https://developers.google.com/machine-learning/guides/rules-of-ml/
#your first objective.

[25] “A design pattern for machine learning with scala, spray and spark,”
https://www.youtube.com/watch?v=hhXs4AOGRpI.

[26] “Closed-loop intelligence: A design pattern for machine learning,” https:
//msdn.microsoft.com/en-us/magazine/mt833408.

[27] “A design pattern for explainability and reproducibil-
ity in production ml,” https://www.parallelm.com/
a-design-pattern-for-explainability-and-reproducibility-in-production-ml/.

[28] “Top trends: Machine learning, microservices, con-
tainers, kubernetes, cloud to edge. what are they
and how do they fit together?” https://mapr.com/blog/
top-technology-trends-machine-learning-event-driven-microservices-
dataops-and-cloud-to-edge/.

[29] “Daisy architecture,” https://datalanguage.com/features/
daisy-architecture.

[30] “Event-driven architecture,” https://www.daitan.com/wp-content/
uploads/2017/11/Daitan Whitepaper Event-Driven Architecture.pdf.

[31] “Demystifying data lake architecture,” https://www.datasciencecentral.
com/profiles/blogs/demystifying-data-lake-architecture.

[32] “Exploring development patterns in data sci-
ence,” https://www.theorylane.com/2017/10/20/
some-development-patterns-in-data-science/.

[33] “Architecture of data lake,” https://datascience.foundation/
sciencewhitepaper/architecture-of-data-lake.

[34] “From insights to value - building a modern log-
ical data lake to drive user adoption and busi-
ness value,” https://www.slideshare.net/Hadoop Summit/
from-insights-to-value-building-a-modern-logical-data-lake-to-drive-
user-adoption-and-business-value.

[35] “Lambda architecture pattern,” https://hub.packtpub.com/
lambdaarchitecture-pattern/.

[36] “Busting event-driven myths,” https://www.infoworld.com/article/
3269207/busting-event-driven-myths.html.

[37] C. Hill, R. Bellarny, T. Erickson, and M. M. Burnett, “Trials and
tribulations of developers of intelligent systems: A field study,”
in 2016 IEEE Symposium on Visual Languages and Human-
Centric Computing, VL/HCC 2016, Cambridge, United Kingdom,
September 4-8, 2016, 2016, pp. 162–170. [Online]. Available:
https://doi.org/10.1109/VLHCC.2016.7739680

[38] T. Seymoens, F. Ongenae, A. Jacobs, S. Verstichel, and A. Ackaert,
“A methodology to involve domain experts and machine learning
techniques in the design of human-centered algorithms,” in Human
Work Interaction Design. Designing Engaging Automation - 5th IFIP
WG 13.6 Working Conference, HWID 2018, Espoo, Finland, August
20-21, 2018, Revised Selected Papers, 2018, pp. 200–214. [Online].
Available: https://doi.org/10.1007/978-3-030-05297-3\ 14

[39] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed,
V. Josifovski, J. Long, E. J. Shekita, and B. Su, “Scaling distributed
machine learning with the parameter server,” in 11th USENIX
Symposium on Operating Systems Design and Implementation, OSDI
’14, Broomfield, CO, USA, October 6-8, 2014., 2014, pp. 583–
598. [Online]. Available: https://www.usenix.org/conference/osdi14/
technical-sessions/presentation/li\ mu

[40] M. S. Rahman, E. Rivera, F. Khomh, Y. Guéhéneuc, and B. Lehnert,
“Machine learning software engineering in practice: An industrial
case study,” CoRR, vol. abs/1906.07154, 2019. [Online]. Available:
http://arxiv.org/abs/1906.07154

[41] S. Amershi, A. Begel, C. Bird, R. DeLine, H. C. Gall, E. Kamar,
N. Nagappan, B. Nushi, and T. Zimmermann, “Software engineering
for machine learning: a case study,” in Proceedings of the
41st International Conference on Software Engineering: Software
Engineering in Practice, ICSE (SEIP) 2019, Montreal, QC, Canada,
May 25-31, 2019, 2019, pp. 291–300. [Online]. Available: https:
//doi.org/10.1109/ICSE-SEIP.2019.00042

[42] M. H. Nguyen, D. Crawl, T. Masoumi, and I. Altintas, “Integrated
machine learning in the kepler scientific workflow system,” in
International Conference on Computational Science 2016, ICCS 2016,
6-8 June 2016, San Diego, California, USA, 2016, pp. 2443–2448.
[Online]. Available: https://doi.org/10.1016/j.procs.2016.05.545

[43] L. N. Smith and N. Topin, “Deep convolutional neural network
design patterns,” CoRR, vol. abs/1611.00847, 2016. [Online]. Available:
http://arxiv.org/abs/1611.00847

[44] S. Gollapudi, Practical Machine Learning. Packt Publishing, 2016.
[45] A. Basak, Stream Analytics with Microsoft Azure: Real-time data

processing for quick insights using Azure Stream Analytics. Packt
Publishing, 2017.

[46] International Organization for Standardization, “ISO/IEC 12207:2008
Information technology – Software life cycle processes, institution =
International Organization for Standardization,” ISO/IEC, Tech. Rep.,
2017.

[47] X. Zhou, Y. Jin, H. Zhang, S. Li, and X. Huang, “A map of threats
to validity of systematic literature reviews in software engineering,” in
Proceedings of the 23rd Asia-Pacific Software Engineering Conference,
Dec 2016, pp. 153–160.


